Advertisement

Journal of Polymer Research

, Volume 5, Issue 4, pp 221–226 | Cite as

Isothermal crystallization and melting behavior of short carbon fiber reinforced poly(ether ether ketone) composites

  • Shiou-Chang Chao
  • Ming Chen
  • Chia-Ting Chung
Article

Abstract

Films of short carbon fiber reinforced poly(ether ether ketone) (PEEK) composite were formed by compression molding pellets for 10 min at 380 °C under air. A heating stage was used to prepare isothermally treated PEEK composites before DSC scan. The dependence of degree of crystallinity on the heating rate (10–80 °C/min) was investigated for specimens crystallized at different temperatures. The results indicated that 50 °C/min was an optimum heating rate to suppress the reorganization and to avoid the superheating of high crystallinity specimens with the sample weight of 10 mg. The upper peak temperature of double-melting peaks continued to increase with crystallization temperature. This peak temperature was related to the transition from regime II to III. The phenomenon of lower crystallinity and higher melting temperature supports the interpretation that the upper melting peak corresponded to crystals growing during the earlier stage of isothermal crystallization.

Keywords

PEEK Composites DSC Crystallinity Melting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Cakmak and A. Dutta, Polym. Compos., 12, 338 (1991).CrossRefGoogle Scholar
  2. 2.
    P. Cebe and S.-D. Hong, Polymer, 27, 1183 (1986).CrossRefGoogle Scholar
  3. 3.
    R. J. Downs and L. A. Berglund, J. Reinf. Plast. Compos., 6, 89 (1987).Google Scholar
  4. 4.
    A. Dutta, M. Niemeyer and M. Cakmak, Polym. Compos., 12, 257 (1991).Google Scholar
  5. 5.
    A. Jonas, R. Legras and J.-P. Issi, Polymer, 32, 3364 (1991).Google Scholar
  6. 6.
    J. Kenny, A. D’Amore, L. Nicolais, M. Iannone and B. Scatteia, SAMPE J., 25(4), 27 (1989).Google Scholar
  7. 7.
    W. E. Lawrence, J.-A. E. Manson and J. C. Seferis, Composites, 21, 475 (1990).CrossRefGoogle Scholar
  8. 8.
    L. H. Lee, J. J. Vanselow and N. S. Schneider, Polym. Eng. Sci., 28, 181 (1988).Google Scholar
  9. 9.
    W. I. Lee, M. F. Talbott, G. S. Springer and L. A. Berglund, J. Reinf. Plast. Compos., 6, 2 (1987).Google Scholar
  10. 10.
    J.-A. E., Manson, T. L. Schneider and J. C. Seferis, Polym. Compos., 11, 114 (1990).CrossRefGoogle Scholar
  11. 11.
    J. C. Seferis, Polym. Compos., 7, 158 (1986).CrossRefGoogle Scholar
  12. 12.
    M. F. Talbott, G. S. Springer and L. A. Berglund, J. Compos. Mater., 21, 1056 (1987).Google Scholar
  13. 13.
    F. S. Uralil, G. M. Newaz and A. Lustiger, Polym. Compos., 13, 7 (1992).CrossRefGoogle Scholar
  14. 14.
    G. M. K. Ostberg and J. C. Seferis, J. Appl. Polym. Sci., 33, 29 (1987).CrossRefGoogle Scholar
  15. 15.
    Y. Lee, R. S. Porter and J. S. Lin, Macromolecules, 22, 1756 (1989).Google Scholar
  16. 16.
    J.-Y. Chen, M. Chen and S.-C. Chao, Macromol. Chem. Phys., 199, 1623 (1998).Google Scholar
  17. 17.
    M. Chen and S.-C. Chao, J. Polym. Sci., Polym. Phys., 36, 2225 (1998).Google Scholar
  18. 18.
    M. Chen and J.-Y. Chen, J. Polym. Sci., Polym. Phys., 36, 1335 (1998).Google Scholar
  19. 19.
    M. Chen and C.-T. Chung, J. Polym. Sci., Polym. Phys., 36, 2393 (1998).Google Scholar
  20. 20.
    D. J. Blundell and B. N. Osborn, Polymer, 24, 953 (1983).CrossRefGoogle Scholar
  21. 21.
    D. J. Blundell, Polymer, 28, 2248 (1987).CrossRefGoogle Scholar
  22. 22.
    S. S. Chang, Polym. Commun., 29, 138 (1988).Google Scholar
  23. 23.
    Y. Lee and R. S. Porter, Macromolecules, 20, 1336 (1987).Google Scholar
  24. 24.
    S. Z. D. Cheng, M.-Y. Cao and B. Wunderlich, Macromolecules, 19, 1868 (1986).Google Scholar
  25. 25.
    D. C. Bassett, R. H. Olley and I. A. M. Al Raheil, Polymer, 29, 1745 (1988).Google Scholar
  26. 26.
    H. Marand and A. Prasad, Macromolecules, 25, 1731 (1992).Google Scholar
  27. 27.
    J. N. Hay and D. J. Kemmish, Plast. Rubber Pro. Appl., 11, 29 (1989).Google Scholar
  28. 28.
    H. X. Nguyenn and H. Ishida, Polymer, 27, 1400 (1986).Google Scholar
  29. 29.
    P. B. Rim and J. P. Runt, Macromolecules, 17, 1520 (1984).CrossRefGoogle Scholar
  30. 30.
    M. Chen and C.-T. Chung, Polym. Compos., 19, in press (1998).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 1998

Authors and Affiliations

  1. 1.Institute of Materials Science and EngineeringNational Sun Yat-Sen UniversityKaohsiungTaiwan, ROC

Personalised recommendations