Advertisement

Journal of Polymer Research

, Volume 5, Issue 2, pp 77–84 | Cite as

Block copolyetheresters with poly(trimethylene 2,6-naphthalenedicarboxylate) segments: Effect of composition on thermal properties

  • Ruey-Shi Tsai
  • Yu-Der Lee
Article

Abstract

Block copolyetheresters with hard segments of poly(trimethylene 2,6-naphthalenedicarboxylate) and soft segments of poly(tetramethylene oxide) were prepared by melt polycondensation of dimethyl 2,6-naphthalenedicarboxylate, 1,3-propanediol and poly(tetramethylene ether)glycol (PTMEG) of molecular weights of 650, 1000 and 2000. The block copolyetheresters were characterized by FTIR, 1H NMR, DSC, X-ray diffraction, TSC (thermal stimulated current), DMA and TGA. It was found that the thermal transitions were dependent on the composition. As the charge molar ratio of PTMEG to dimethyl 2,6-naphthalenedicarboxylate, x, increased, the Tm and ΔHm of the polyester segments decreased, which has been also confirmed by the X-ray diffraction data. The polyether segments of the block copolyetheresters derived from PTMEG2000 could crystallize after cooling, but those of the block copolyetheresters derived from PTMEG1000 and PTMEG650 could not crystallize. The DSC, TSC and DMA results show consistent Tg data of the polyether segments. Based on the shift in Tg of the polyether segments, the amorphous parts of the polyether segments and the amorphous parts of the polyester segments were immiscible for the block copolyetheresters derived from PTMEG2000, but became partially miscible for the block copolyetheresters derived from PTMEG1000 and PTMEG650. The TGA results indicated that composition had little effect on thermal degradation under nitrogen.

Keywords

Block copolyetheresters Poly(trimethylene 2,6-naphthalenedicarboxylate) Segments Thermal transitions X-ray diffraction Thermal stimulated current 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. R. Legge, G. Holder and H. E. Schroeder, Eds., Thermoplastic Elastomers: A Comprehensive Review, Hanser Publishers, New York, 1987.Google Scholar
  2. 2.
    A. K. Bhowmick and H. L. Stephens (Eds.), Handbook of Elastomers: New Developments and Technology, Marcel Dekker, New York, 1988.Google Scholar
  3. 3.
    J. C. Shivers and W. Chester, U. S. Pat. 3,023,192 (1962).Google Scholar
  4. 4.
    W. K. Witsiepe, U. S. Pat. 3,651,014 (1972).Google Scholar
  5. 5.
    J. R. Wolfe, Jr., U. S. Pat. 3,775,374 (1973).Google Scholar
  6. 6.
    G. K. Hoeschele U. S. Pat. 3,801,547 (1974).Google Scholar
  7. 7.
    J. R. Wolfe, Jr., Multiphase Polymers, ACS Advances in Chemistry Series 176, S. L. Cooper and G. M. Estes, Eds., pp. 129–151, ACS, Washington D. C., 1979.Google Scholar
  8. 8.
    H. Schroeder and R. J. Cella, Encyclopedia of Polymer Science and Engineering, H. Mark, N. M. Bikales, C. G. Overberger, G. Menges and J. I. Kroschwits, Eds., 2nd Ed., Vol. 12, pp. 75–117, Wiley, New York, 1988.Google Scholar
  9. 9.
    R. W. Seymour, J. R. Overton and L. S. Corley, Macromolecules, 8, 331 (1975).CrossRefGoogle Scholar
  10. 10.
    C. M. Boussias, R. H. Peters and R. H. Still, J. Appl. Polym. Sci., 25, 855 (1980).Google Scholar
  11. 11.
    L. L. Zhu and G. Wegner, Makromol. Chem., 182, 3625 (1981).Google Scholar
  12. 12.
    R. M. Briber and E. L. Thomas, Polymer, 26, 8 (1985).CrossRefGoogle Scholar
  13. 13.
    J. L. Castles, M. A. Vallance, J. M. McKenna and S. L. Cooper, J. Polym. Sic., Polym. Phys., 23, 2119 (1985).Google Scholar
  14. 14.
    J. C. Stevenson and S. L. Cooper, J. Polym. Sic., Polym. Phys., 26, 953 (1988).Google Scholar
  15. 15.
    J. C. Stevenson and S. L. Cooper, Macromolecules, 21, 1309 (1988).CrossRefGoogle Scholar
  16. 16.
    R. A. Phillips, J. M. McKenna and S. L. Cooper, J. Polym. Sic., Polym. Phys., 32, 791 (1994).Google Scholar
  17. 17.
    S. J. Chang, F. C. Chang and H. B. Tsai, Polm. Eng. Sci., 35, 190 (1994).Google Scholar
  18. 18.
    H. B. Tsai, C. Lee and N. S. Chang, Polym. J., 24, 157 (1992).CrossRefGoogle Scholar
  19. 19.
    N. T. Hsiue, C. C. M. Ma and H. B. Tsai, J. Polym. Sic., Polym. Chem., 33, 1153 (1995).Google Scholar
  20. 20.
    H. B. Tsai, D. K. Lee, J. L. Liu, Y. S. Tsao, R. S. Tsai and J. W. You, Polym. Bull., 35, 743 (1995).CrossRefGoogle Scholar
  21. 21.
    I. N. Duling and W. Chester, U. S. Pat. 3,436,376 (1969).Google Scholar
  22. 22.
    R. S. Tsai and Y. D. Lee, J. Appl. Polym. Sci., 66, 1411 (1997).CrossRefGoogle Scholar
  23. 23.
    J. P. Ibar, Fundamentals of Thermal Stimulated Current and Relaxation Map Analysis, SLP Press, Newcaan, 1993.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 1998

Authors and Affiliations

  • Ruey-Shi Tsai
    • 1
  • Yu-Der Lee
    • 1
  1. 1.Department of Chemical EngineeringNational Tsing-Hua UniversityHsinchuTaiwan, ROC

Personalised recommendations