Journal of Polymer Research

, Volume 13, Issue 3, pp 247–254 | Cite as

Synthesis and Characterization of PEG-Modified Polystyrene Particles and Isothermal Equilibrium Adsorption of Bovine Serum Albumin on these Particles

  • Chorng-Shyan Chern
  • Cheng-Kang Lee
  • Kuan-Chaung Liu


A series of monodisperse submicron polystyrene (PS) particles with different surface monomethoxy poly(ethylene glycol) (mPEG) densities were prepared and characterized. The effects of the chemically grafted mPEG chains (MW = 2,000) on the adsorption of bovine serum albumin (BSA) molecules onto these negatively charged particles at pHs 5 and 3 were investigated. The native particles at both pH values showed the largest values of q max (maximum amount of BSA adsorbed on the particle surface). The surface mPEG chains were very effective in retarding the BSA adsorption and q max decreased significantly with increasing surface mPEG density. The values of q max were greater for both the native and mPEG-modified particles at pH 5 compared to those counterparts at pH 3, due to the different adsorption mechanisms. Hydrophobic interaction predominated in the adsorption of BSA molecules on the particles at pH 5, whereas electrostatic interaction had a crucial influence on the BSA adsorption at pH 3. At pH 5, the adsorption behaviors were qualitatively explained by the calculated values of the free energy barrier against the BSA adsorption. A schematic model was also proposed to qualitatively describe the conformations of BSA molecules adsorbed on the particle surfaces.

Key words

BSA electrostatic interaction hydrophobic interaction PEG-modified PS particles protein adsorption steric hindrance effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Andrade, S. Nagaoka, S. Cooper, T. Okano and S. W. Kim, ASAIO J., 10, 75 (1987).CrossRefGoogle Scholar
  2. 2.
    J. H. Lee, P. Kopeckova, J. Kopecek and J. D. Andrade, Biomaterials, 11, 455 (1990).CrossRefGoogle Scholar
  3. 3.
    B. Wesslen and K. B. Wesslen, J. Polym. Sci., Part A, Polym. Chem., 27, 3915 (1989).CrossRefGoogle Scholar
  4. 4.
    A. K. Dolan and S. F. Edwards, Proc. R. Soc. Lond., 343, 427 (1975).CrossRefGoogle Scholar
  5. 5.
    J. Hermans, J. Chem. Phys., 77, 2193 (1982).CrossRefGoogle Scholar
  6. 6.
    C. S. Chern, C. K. Lee, C. Kuan and K. C. Liu, Colloid Polym. Sci., 283, 917 (2005).CrossRefGoogle Scholar
  7. 7.
    V. Shubin, Y. Samoshina, A. Menshikova and T. Evseeva, Colloid Polym. Sci., 275, 655 (1997).CrossRefGoogle Scholar
  8. 8.
    C. S. Chern, C. K. Lee, Y. J. Tsai and C. C. Ho, Colloid Polym. Sci., 276, 427 (1998).CrossRefGoogle Scholar
  9. 9.
    T. Sato and R. Ruch, Stabilization of Colloidal Dispersions by Polymer Adsorption, Chap. 3, Marcel Dekker, New York, 1980.Google Scholar
  10. 10.
    D. H. Napper, Polymeric Stabilization of Colloidal Dispersions, Chap. 2, Academic Press, London, 1983.Google Scholar
  11. 11.
    V. Fulcrand, R. Jacquier, R. Lazaro and P. Viallefont, Tetrahedron, 46, 3909 (1990).CrossRefGoogle Scholar
  12. 12.
    H. Rosch, in M. J. Schick (Ed.), Nonionic Surfactants, Dekker, New York, 1967.Google Scholar
  13. 13.
    P. A. Belter, E. L. Cussler and W. S. Hu, Bioseparations: Downstream Processing for Biotechnology, Wiley, New York, 1988.Google Scholar
  14. 14.
    G. Scatchard, Ann. N.Y. Acad. Sci., 51, 600, (1949).CrossRefGoogle Scholar
  15. 15.
    N. C. Price and S. Lewis, Fundamentals of Enzymology, Oxford University Press, Oxford, 1982.Google Scholar
  16. 16.
    S. Y. Suen, J. Chem. Technol. Biotechnol., 70, 278 (1997).CrossRefGoogle Scholar
  17. 17.
    J. N. Israelachvili and R. M. Pashley, J. Colloid Interface Sci., 98, 500 (1984).Google Scholar
  18. 18.
    R. M. Pashley, P. M. McGuiggan and B. W. Ninham, Science, 229, 1088 (1985).CrossRefGoogle Scholar
  19. 19.
    E. Perez and J. E. Proust, J. Phys. Lett., 46, 79 (1985).CrossRefGoogle Scholar
  20. 20.
    P. M. Claesson, R. Kjellander, P. Stenius and H. K. Christenson, J. Chem. Soc., Faraday Trans. I, 82, 2735 (1986).CrossRefGoogle Scholar
  21. 21.
    Ya I. Rabinovich and B. V. Derjaguin, Colloids Surf., 30, 243 (1988).Google Scholar
  22. 22.
    P. M. Claesson and H. K. Christenson, J. Phys. Chem., 92, 1650 (1988).CrossRefGoogle Scholar
  23. 23.
    J. Brandrup and E. H. Immergut, Polymer Handbook, VII, 3rd edn., Wiley Interscience, New York, 1989, pp. 519–559.Google Scholar
  24. 24.
    S.I. Jeon, J.H. Lee, J.D. Andrade and P.G. de Gennes, J. Colloid interface Sci., 142, 149, 1991.CrossRefGoogle Scholar
  25. 25.
    J. Y. Yoon, J. H. Kim and W. S. Kim, Colloids Surf., B Biointerfaces, 12, 15 (1998).CrossRefGoogle Scholar

Copyright information

© Springer Science+-Business Media, Inc. 2005

Authors and Affiliations

  • Chorng-Shyan Chern
    • 1
  • Cheng-Kang Lee
    • 1
  • Kuan-Chaung Liu
    • 1
  1. 1.Department of Chemical EngineeringNational Taiwan University of Science and TechnologyTaipei 106Republic of China

Personalised recommendations