Advertisement

Journal of Polymer Research

, Volume 12, Issue 2, pp 103–112 | Cite as

Phase Behavior and Mechanical Properties of Siloxane-Urethane Copolymer

  • S. K. Liao
  • S. C. Jang
  • M. F. Lin
Article

Abstract

Two series of siloxane-urethane copolymers were prepared from polydimethylsiloxane (PDMS) with a molecular weight of 1000 or 1800 which was used as a soft segment, 4,4′-diphenylmethane diisocyanate (MDI) and 1,4-butanediol (1,4-BD). Differential scanning calorimetry (DSC) demonstrated that the position (Tgs) and breadth (ΔB) of soft-segment glass transition of copolymers remained constant as the hard-segment content increased. Heat capacities at soft-segment glass transition of the copolymer (ΔCp) were 0.195∼0.411 J/gC and heat capacities of pure PDMS (ΔCp0) were 0.571∼0.647 J/gC, leading to the various ΔCp/ΔCp0 ratios. The ΔCp/ΔCp0 ratios decreased as the increasing of hard-segment content, showing poor phase separation. The FTIR spectrum confirmed the occurrence of hydrogen bonding in ether end-group of pure PDMS. The ether group of the soft segment led to interfacial mixing between soft and hard segments. The tan δ of the soft segment determined by dynamic mechanical testing (DMA) also identified the mixing of soft and hard segments. The mechanical properties of the copolymer were directly related to either the soft and hard segment contents or the chain lengths of soft and hard segments. The hard segment that reinforced the soft segment and interfacial thickness between soft and hard segment dominated the mechanical properties.

Keywords

DMA DSC heat capacities mixing siloxane-urethane copolymer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. E. Gibson, M. A. Vallance and S. L. Cooper, Development in Block Copolymer, Appl. Sci. Ser., Elsevier Press, London, 1982. Google Scholar
  2. 2.
    S. L. Aggarwal, Block Polymer, Plenum Press, New York, 1970. Google Scholar
  3. 3.
    N. S. Schneider, C. R. Desper, J. L. Illinger and A. O. King, J. Macromol. Sci. Phys. B, 11, 527 (1975). Google Scholar
  4. 4.
    J. W. C. Van-Bogart, P. E. Gibson and S. L. Cooper, J. Polym. Sci. Polym. Phys. Ed., 21, 65 (1983). CrossRefGoogle Scholar
  5. 5.
    T. A. Speckhard, G. Ver-Strate, P. E. Gibson and S. L. Cooper, Polym. Eng. Sci., 23, 337 (1983). CrossRefGoogle Scholar
  6. 6.
    M. Xu, W. J. Macknight, C. H. Y. Chen and E. L. Thomas, Polymer, 24, 1327 (1983). CrossRefGoogle Scholar
  7. 7.
    M. F. Lin, Y. C. Shu, W. C. Tsen and F. S. Chuang, J. Appl. Polym. Sci., 81, 3489 (2001). CrossRefGoogle Scholar
  8. 8.
    T. A. Speckhard, K. K. S. Hwang, S. L. Cooper, V. S. C. Chang and J. P. Kennedny, Polymer, 26, 70 (1985). CrossRefGoogle Scholar
  9. 9.
    R. A. Phillips, J. C. Stevenson, M. R. Nagarajan and S. L. Cooper, J. Macromol. Sci. Phys. B, 27, 245 (1988). Google Scholar
  10. 10.
    Mitsui Nisso Corp. Japan Kokai, Tokkyo, Koho, Jpn. Pat. 58,217,515, 1983 Google Scholar
  11. 11.
    V. Y. Kotomkin, V. A. Baburina, E. P. Lebedov, V. A. Bylev, T. E. Yasmikova and V. O. Reikhsfeld, Khimyai Parki Primonennie, Kremnii I Fosforogan, Soedin L, 23 (1980); Chem. Abstr., 95:43841d. Google Scholar
  12. 12.
    V. Y. Kotomkin, V. A. Baburna, V. P. Lebdev and Y. Y. Kercha, Plastic Massy, 27 (1981); Chem. Abstr., 95:43841d. Google Scholar
  13. 13.
    Y. Li, T. Gao, J. Liu, K. Linliu, C. R. Desper and B. Chu, Macromolecules, 25, 7365 (1992). CrossRefGoogle Scholar
  14. 14.
    Y. Li, W. Kang, J. O. Stoffer and B. Chu, Macromolecules, 27, 612 (1994). CrossRefGoogle Scholar
  15. 15.
    Y. Li, T. Gao and B. Chu, Macromolecules, 25, 1737 (1992). CrossRefGoogle Scholar
  16. 16.
    B. Chu, T. Gao, Y. Li, J. Wang, C. R. Desper and C. A. Byrne, Macromolecules, 25, 5724 (1992). CrossRefGoogle Scholar
  17. 17.
    Y. Li, Z. Ren, M. Zhao, H. Yang and B. Chu, Macromolecules, 26, 612 (1993). CrossRefGoogle Scholar
  18. 18.
    T. A. Speckhard, P. E. Gibson, S. L. Cooper, V. S. C. Chang and J. P. Kennedny, Polymer, 26, 55 (1985). CrossRefGoogle Scholar
  19. 19.
    L. Cuve, J. P. Pascualt and G. Boiteux, Polymer, 33, 3957 (1992). CrossRefGoogle Scholar
  20. 20.
    T. A. Speckhard and S. L. Cooper, Rub. Chem. Technol., 59, 405 (1986). Google Scholar
  21. 21.
    T. L. Smith, Polym. Eng. Sci., 17, 129 (1977). CrossRefGoogle Scholar
  22. 22.
    T. L. Smith, J. Polym. Sci. Polym. Phys. Ed., 12, 1825 (1974). CrossRefGoogle Scholar
  23. 23.
    Y. Xu, M. R. Nagarajan, T. G. Grasel, P. E. Gibson and S. L. Cooper, J. Polym. Sci. Polym. Phys. Ed., 23, 2319 (1985). CrossRefGoogle Scholar
  24. 24.
    J. T. Koberstein, A. F. Galambos and L. M. Leung, Macromolecules, 25, 6195 (1992). CrossRefGoogle Scholar
  25. 25.
    D. R. Paul, Polym. Mater. Sci. Eng., 50, 1 (1984). Google Scholar
  26. 26.
    C. H. Y. Chen and E. L. Thomas, Polymer, 27, 659 (1986). CrossRefGoogle Scholar
  27. 27.
    R. W. Seymour, G. M. Estes and S. L. Cooper, Macromolecules, 3, 579 (1970). CrossRefGoogle Scholar
  28. 28.
    Y. Camberlin and J. P. Pascault, J. Polym. Sci. Polym. Chem. Ed., 21, 415 (1983). CrossRefGoogle Scholar
  29. 29.
    Z. S. Petrovic and I. J. Soda-So, J. Polym. Sci. Polym. Phys. Ed., 27, 545 (1989). CrossRefGoogle Scholar
  30. 30.
    Y. Camberlin and J. P. Pascault, J. Polym. Sci. Polym. Phys. Ed., 22, 1835 (1984). CrossRefGoogle Scholar
  31. 31.
    L. Cuve, J. P. Pascault, G. Boiteux and G. Seytre, Polymer, 32, 343 (1991). CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • S. K. Liao
    • 1
  • S. C. Jang
    • 1
  • M. F. Lin
    • 2
  1. 1.Department of Fiber and Composite MaterialsFeng Chia UniversityTaichung cityTaiwan, Republic of China
  2. 2.Department of Business AdministrationTransworld Institute of TechnologyDouliu cityTaiwan, Republic of China

Personalised recommendations