Advertisement

Journal of Polymer Research

, Volume 12, Issue 5, pp 361–365 | Cite as

Cationic Ring Opening Polymerization of Glycolide Catalysed by a Montmorillonite Clay Catalyst

  • Harrane Amine
  • Oussadi Karima
  • Belaouedj Mohamed El Amine
  • Mohamed Belbachir
  • Rachid Meghabar
Article

Abstract

The ring opening bulk polymerization of glycolide catalyzed by Maghnite-H+ was reported. Maghnite-H+ is a montmorillonite sheet silicate clay, exchanged with protons. The effect of the amount of Maghnite-H+ and the temperature on polymerisation was studied. Increasing Maghnite-H+ proportion and temperature produced the increase in glycolide conversion. The kinetics indicated that the polymerization rate is first order with respect to monomer concentration. Mechanism studies showed that monomer inserted into the growing chains with the acyl–oxygen bond scission rather than the break of alkyl–oxygen bond.

Keywords

cationic polymerization clay montmorillonite polyglycolide ring opening polymerization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Ikada, Biodegradable Polyesters, Tokyo, IPC Publishers, 1999. Google Scholar
  2. 2.
    Y. Doi, Microbial Polyesters, VCH Publishers New York, 1990. Google Scholar
  3. 3.
    Y. Inoue and N. Yoshie, Prog. Polym. Sci., 17, 571 (1992). CrossRefGoogle Scholar
  4. 4.
    T. Gerngrass and U. Slater, Scient. Amer., 37, 59 (2000). Google Scholar
  5. 5.
    S. M. Vert, in Degradable Polymers: Principles and Application, Scoh, Ed., Chapman and Hall, London, 1995, p. 43. Google Scholar
  6. 6.
    Y. Cha and C. G. Pih, Biomaterials, 11, 108 (1990). CrossRefPubMedGoogle Scholar
  7. 7.
    S. H. Lee, S. H. Kim, Y. K. Han and Y. H. Kim, J. Polym. Sci. Polym. Chem., 39, 973 (2001). CrossRefGoogle Scholar
  8. 8.
    N. Kawasaki, A. Nakayama, Y. Maeda, K. Hayachi, N. Yamamoto and S. Aiaba, Macromol. Chem. Phys., 199, 2445 (1998). Google Scholar
  9. 9.
    H. Nishida, M. Yamashite, T. Endo and Y. Tokiwa, Macromolecules, 33, 6982 (2000). CrossRefGoogle Scholar
  10. 10.
    H. Nishida, S. Susuki, M. Konno and Y. Kokiwa, Polym. Degrad. Stab., 67, 291 (2000). CrossRefGoogle Scholar
  11. 11.
    H. R. Kricheldorf, I. K. Saunders and A. Stricker, Macromolecules, 33, 702 (2000). CrossRefGoogle Scholar
  12. 12.
    M. Belbachir and A. Bensaoula, US Patent No 6,274,527B1 (2001). Google Scholar
  13. 13.
    A. Harrane, R. Meghabar and M. Belbachir, Int. J. Mol. Sci., 3, 790 (2002). Google Scholar
  14. 14.
    R. Meghabar, A. Megherbi and M. Belbachir, Polymer, 44, 2397 (2003). CrossRefGoogle Scholar
  15. 15.
    K. Schwarz and M. Epple, Macromol. Chem. Phys., 200, 2221 (1999). CrossRefGoogle Scholar
  16. 16.
    C. L. Thomas, J. Hickey and G. Stecker, Ind. Eng. Chem., 42, 866 (1950). CrossRefGoogle Scholar
  17. 17.
    F. Hojabri, J. Appl. Chem. Biotechnol., 21, 87 (1971). Google Scholar
  18. 18.
    J. A. Ballantine, M. Davies and H. Purnell, J.C.S. Chem. Comm., 27, 428 (1981). Google Scholar
  19. 19.
    C. Breen, J. Madejovà and P. Komadel, J. Mater. Chem., 5, 496 (1995). Google Scholar
  20. 20.
    J. Madejovà and P. Komadel, J. Phys. Chem. B., 10, 5324 (1997). Google Scholar
  21. 21.
    G. Odian, La Polymerisation: Principes et Applications, Technica, New York, 1994, Chapter 2, p. 222. Google Scholar
  22. 22.
    G. Odian, La Polymerisation: Principes et Applications, Technica, New York, 1994, Chapter 2, p. 582. Google Scholar
  23. 23.
    K. J. Ivin and T. Sueguse, Ring Opening Polymerization, Vols 1–2, Elsevier, London, 1984. Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Harrane Amine
    • 1
  • Oussadi Karima
    • 1
  • Belaouedj Mohamed El Amine
    • 1
  • Mohamed Belbachir
    • 1
  • Rachid Meghabar
    • 1
  1. 1.Laboratoire de Chimie des Polymères, Département de Chimie, Faculté des SciencesUniversité d’Oran Es-SeniaEl M’naouerAlgérie

Personalised recommendations