Journal of Youth and Adolescence

, Volume 44, Issue 2, pp 285–297 | Cite as

Autonomic Dysfunction: A Possible Pathophysiological Pathway Underlying the Association Between Sleep and Obesity in Children At-Risk for Obesity

  • Denise C. Jarrin
  • Jennifer J. McGrath
  • Paul Poirier
  • QUALITY Cohort Collaborative Group
Empirical Research


While mounting evidence suggests that sleep plays an important role in the etiology of obesity, the underlying pathogenic pathways are complex and unresolved. Experimental sleep deprivation studies demonstrate sympathovagal imbalance, indicative of diminished parasympathetic activity and/or heightened sympathetic activity, is consequent to poor sleep. Further, obese children exhibit sympathovagal imbalance, particularly during the night, compared to non-obese children. The question remains whether sympathovagal imbalance is one potential pathophysiological pathway underlying the association between sleep and obesity. The aim of the present study was to examine whether sympathovagal imbalance contributed to the association between sleep and obesity in children. Participants included 564 children aged 10 to 12 years (M = 11.67, SD = 0.95; 43.5 % girls) from the QUALITY Cohort, a longitudinal study of children at-risk for the development of obesity. While children were at-risk due to confirmed parental obesity status, 57.7 % of children were of normal body mass index (5–85th percentile). Sleep duration, sleep timing, and sleep disturbances were based on child- and parent-report. Anthropometrics were measured for central adiposity (waist circumference) and body composition (body mass index, fat mass index). Sympathovagal imbalance was derived from heart rate variability spectral analyses. Estimated path coefficients revealed that sympathovagal imbalance partially contributed to the association between poor sleep (later bedtimes, sleep-disordered breathing) and obesity. These findings highlight the importance of better understanding sympathovagal imbalance and its role in the etiology and maintenance of obesity. Future research should consider investigating nocturnal sympathovagal balance in youth.


Children Obesity Sleep Heart rate variability Sympathovagal imbalance Autonomic dysfunction 



Body mass index


Children’s Sleep Habits Questionnaire


Dual-energy X-ray absorptiometry




Fast Fourier Transform


High frequency


Low frequency



This work was partly supported by the Canadian Institutes of Health Research (J. McGrath OCO-79897, MOP-89886, MSH-95353; D.C. Jarrin BO512201). The QUALITY Cohort is funded by the Canadian Institutes of Health Research (M. Henderson #MOP-119512; M. Lambert #OHO-69442, #NMD-94067, #MOP-97853), the Heart and Stroke Foundation of Canada (#PG-040291), and Fonds de la recherche en santé du Québec. Dr. Marie Lambert (July 1952–February 2012), pediatric geneticist and researcher, initiated the QUALITY Cohort. Her leadership and devotion to QUALITY will always be remembered and appreciated. Sincere thanks to the dedicated QUALITY Cohort staff, especially Catherine Pelletier (Coordinator), Ginette Lagacé, Natacha Gaulin-Marion, and Hugues Charron, without whom this research would not be possible. Finally, we are grateful to all the families that participate in the QUALITY Cohort.

Conflict of interest

None to disclose.

Author contributions

The QUALITY Cohort Collaborative Group designed and coordinated the study and collected measurements at clinic visits. J.J.M. and P.P. planned the study design and analysis of the ECG recordings. D.C.J. performed the statistical analyses. D.C.J. and J.J.M. conceived the research question, interpreted the findings, and wrote the manuscript.


  1. Alvarez, G. E., Ballard, T. P., Beske, S. D., & Davy, K. P. (2004). Subcutaneous obesity is not associated with sympathetic neural activation. American Journal of Physiology Heart and Circulatory Physiology, 287, H414–H418.PubMedCrossRefGoogle Scholar
  2. Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic and statistical considerations. Journal of Personality and Social Psychology, 51, 1171–1182.CrossRefGoogle Scholar
  3. Beebe, D. W., Lewin, D., Zeller, M., McCabe, M., MacLeod, K., Daniels, S. R., & Amin, R. (2007). Sleep in overweight adolescents: Shorter sleep, poorer sleep quality, sleepiness, and sleep-disordered breathing. Journal of Pediatric Psychology, 32, 69–79.PubMedCrossRefGoogle Scholar
  4. Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman, P., Kaufman, P. G., Malik, M., & van der Molen, M. W. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34, 623–648.PubMedCrossRefGoogle Scholar
  5. Björntorp, P. (2001). Do stress reactions cause abdominal obesity and comorbidities? Obesity Reviews, 2, 73–86.PubMedCrossRefGoogle Scholar
  6. Bonnet, M. H., & Arand, D. L. (2010). Hyperarousal and insomnia: State of the science. Sleep Medicine Reviews, 14, 9–15.PubMedCrossRefGoogle Scholar
  7. Cacioppo, J. T., Berntson, G. G., Binkley, P. F., Quigley, K. S., Uchino, B. N., & Fieldstone, A. (1994). Autonomic cardiac control. II. Noninvasive indices and basal response as revealed by autonomic blockades. Psychophysiology, 31, 586–598.PubMedCrossRefGoogle Scholar
  8. Danese, A., & McEwen, B. S. (2012). Adverse childhood experiences, allostasis, allostatic load and age-related disease. Physiology & Behavior, 106, 29–39.CrossRefGoogle Scholar
  9. Daniels, S. R., Morrison, J. A., Sprencher, D. L., Khoury, P., & Kimball, T. R. (1999). Association of body fat distribution and cardiovascular risk factors in children and adolescents. Circulation, 99, 541–545.PubMedCrossRefGoogle Scholar
  10. Diedrich, A., Jordan, J., Tank, J., Shannon, J. R., Robertson, R., Luft, F. C., & Biaggioni, I. (2003). The sympathetic nervous system in hypertension: Assessment by blood pressure variability and ganglionic blockade. Journal of Hypertension, 21, 1677–1686.PubMedCrossRefGoogle Scholar
  11. Drapeau, V., Therrien, F., Richard, D., & Tremblay, A. (2003). Is visceral obesity a physiological adaptation to stress? Panminerva Medicine, 45, 189–195.Google Scholar
  12. Ekstedt, M., Åkerstedt, T., & Söderström, M. (2004). Microarousals during sleep are associated with increased levels of lipids, cortisol, and blood pressure. Psychosomatic Medicine, 66, 925–931.PubMedCrossRefGoogle Scholar
  13. El-Sheikh, M., Buckhalt, J. A., Keller, P. S., & Granger, D. A. (2008). Children’s objective and subjective sleep disruptions: Links with afternoon cortisol levels. Health Psychology, 27, 26–33.PubMedCrossRefGoogle Scholar
  14. Fliers, E., Kreier, F., Voshol, P. J., Havekes, L. M., Saurewein, H. P., Kalsbeek, A., & Romijn, J. A. (2003). White adipose tissue: Getting nervous. Journal of Neuroendocrinology, 15, 1005–1010.PubMedCrossRefGoogle Scholar
  15. Franco, P., Seret, N., Van Hees, J. N., Lanquart, J.-P., Groswasser, J., & Kahn, A. (2003). Cardiac changes during sleep in sleep-deprived infants. Sleep, 26, 845–848.PubMedGoogle Scholar
  16. Gaina, A., Sekine, M., Chen, X., Hamanishi, S., & Kagamimori, S. (2004). Validity of child sleep diary questionnaire among junior high school children. Journal of Epidemiology, 14, 1–4.Google Scholar
  17. Graziano, P. A., Calkins, S. D., Keane, S. P., & O’Brien, M. (2011). Cardiovascular regulation profile predicts developmental trajectory of BMI and pediatric obesity. Obesity (Silver Spring), 19, 1818–1825.CrossRefGoogle Scholar
  18. Hairston, I. S., Ruby, N. F., Brooke, S., Peyron, C., Denning, D. P., Heller, H. C., & Sapolsky, R. M. (2001). Sleep deprivation elevates plasma corticosterone levels in neonatal rats. Neuroscience Letters, 15, 29–32.CrossRefGoogle Scholar
  19. Hakim, F., Gozal, D., & Kheirandish-Gozal, L. (2012). Sympathetic and catecholaminergic alterations in sleep apnea with particular emphasis on children. Frontiers in Neurology, 3, 1–13.CrossRefGoogle Scholar
  20. Haqq, A. M., DeLorey, D. S., Sharma, A. M., Freemark, M., Kreier, F., Mackenzie, M. L., & Richer, L. P. (2011). Autonomic nervous system dysfunction in obesity and Prader–Willi syndrome: Current evidence and implications for future obesity therapies. Clinical Obesity, 1, 175–183.CrossRefGoogle Scholar
  21. He, M., Harris, S., Piche, L., & Beynon, C. (2009). Understanding screen- related sedentary behavior and its contributing factors among school-aged children: A social-ecologic exploration. American Journal of Health Promotion, 23, 299–308.PubMedCrossRefGoogle Scholar
  22. Jarrin, D. C., McGrath, J. J., & Drake, C. L. (2013). Beyond sleep duration: Distinct sleep dimensions are associated with obesity in children and adolescents. International Journal of Obesity, 37, 552–558.PubMedCrossRefGoogle Scholar
  23. Jarrin, D., McGrath, J. J., Giovanniello, S., Poirier, P., & Lambert, M. (2012). Measurement fidelity of heart rate variability signal processing: The devil is in the details. International Journal of Psychophysiology, 86(1), 88–97.PubMedCrossRefGoogle Scholar
  24. Jarrin, D. C., McGrath, J. J., Poirier, P., Séguin, L., Tremblay, R. E., Montplaisir, J. Y., et al. (2014). Short-term heart rate variability in a population-based sample of 10-year-old children. Pediatric Cardiology. doi: 10.1007/s00246-014-0962-y.
  25. Kaufman, C. L., Kaiser, D. R., Steinberger, J., Kelly, A. S., & Dengel, D. R. (2007). Relationships of cardiac autonomic function with metabolic abnormalities in childhood obesity. Obesity, 15, 1164–1171.PubMedCrossRefGoogle Scholar
  26. Knutson, K. L. (2012). Does inadequate sleep play a role in vulnerability to obesity? American Journal of Human Biology, 24, 361–371.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Knutson, K. L., & van Cauter, E. (2008). Associations between sleep loss and increased risk of obesity and diabetes. Annals of New York Academy Science, 1129, 287–304.CrossRefGoogle Scholar
  28. Kwok, K.-L., Yung, T.-C., Ng, D. K., Chan, C.-H., Lau, W.-F., & Fu, Y.-M. (2011). Heart rate variability in childhood obstructive sleep apnea. Pediatric Pulmonology, 210, 205–210.CrossRefGoogle Scholar
  29. Laberge, L., Petit, D., Simard, C., Vitaro, F., Tremblay, R. E., & Montplaisir, J. (2011). Development of sleep patterns in early adolescence. Journal of Sleep Research, 10, 59–67.CrossRefGoogle Scholar
  30. Lambert, M., Van Hulst, A., O’Loughlin, J., Tremblay, A., Barnett, T. A., Charron, H., & Paradis, G. (2011). Cohort profile: The Quebec adipose and lifestyle investigation in youth cohort. International Journal of Epidemiology, 41, 1533–1544.PubMedCrossRefGoogle Scholar
  31. Lewandowski, A. S., Toliver-Sokol, M., & Palermo, T. M. (2011). Evidence-based review of subjective pediatric sleep measures. Journal of Pediatric Psychology, 36, 780–793.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Lumeng, J. C., Somashekar, D., Appugliese, D., Kaciroti, N., Corwyn, R. F., & Bradley, R. H. (2007). Shorter sleep duration is associated with increased risk for being overweight at ages 9 to 12 years. Pediatrics, 120, 1020–1029.PubMedCrossRefGoogle Scholar
  33. Marshall, W. A., & Tanner, J. M. (1969). Variations in the pattern of pubertal changes in girls. Archives of Disease in Childhood, 44, 291–303.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Marshall, W. A., & Tanner, J. M. (1970). Variations in the pattern of pubertal changes in boys. Archives of Disease in Childhood, 45, 13–23.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Martini, G., Riva, P., Rabbia, F., Molini, V., Ferrero, G. B., Cerutti, F., & Vrglio, F. (2001). Heart rate variability in childhood obesity. Clinical Autonomic Research, 11, 87–91.PubMedCrossRefGoogle Scholar
  36. Matricciani, L. (2013). Subjective reports of children’s sleep duration: Does the question matter? A literature review. Sleep Medicine, 14, 303–311.PubMedCrossRefGoogle Scholar
  37. Nagai, N., Matsumoto, T., Kita, H., & Moritani, T. (2003). Autonomic nervous system activity and the state and development of obesity in Japanese school children. Obesity Research, 11, 25–32.PubMedCrossRefGoogle Scholar
  38. Ogdon, C. L., Carroll, M. D., Kit, B. K., & Flegal, K. M. (2012). Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. The Journal of the American Medical Association, 307, 483–490.CrossRefGoogle Scholar
  39. Ogdon, C. L., Kuczmarski, R. J., Flegal, K. M., Mei, Z., Guo, S., Wei, R., & Johnson, C. L. (2002). Growth charts for the United States: Improvements to the 1977 National Center for Health Statistics Version. Pediatrics, 109, 45–60.CrossRefGoogle Scholar
  40. Olds, T. S., Maher, C. A., & Matricciani, L. (2011). Sleep duration or bedtime? Exploring the relationship between sleep habits and weight status and activity patterns. Sleep, 34, 1299–1307.PubMedCentralPubMedGoogle Scholar
  41. Owens, J. A., Spirito, A., & McGuinn, M. (2000). The children’s sleep habits questionnaire (CSHQ): Psychometric properties of a survey instrument for school-aged children. Sleep, 23, 1043–1051.PubMedGoogle Scholar
  42. Pagani, M., Montano, N., Porta, A., Malliani, A., Abboud, F. M., Birkett, C., & Somers, V. K. (1997). Relationship between spectral components of cardiovascular variabilities and direct measures of muscle sympathetic nerve activity in humans. Circulation, 95, 1441–1448.PubMedCrossRefGoogle Scholar
  43. Peterson, H. R., Rothschild, M., Weinberg, C. R., Fell, R. D., McLeish, K. R., & Pfeifer, M. A. (1998). Body fat and the activity of the autonomic nervous system. New England of Journal Medicine, 318, 1077–1083.CrossRefGoogle Scholar
  44. Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40, 879–891.PubMedCrossRefGoogle Scholar
  45. Rabbia, F., Silke, B., Conterno, A., Grosso, T., De Vito, B., Rabbone, I., & Veglio, F. (2003). Assessment of cardiac autonomic modulation during adolescent obesity. Obesity Research, 11, 541–548.PubMedCrossRefGoogle Scholar
  46. Rayner, D. V., & Trayhurn, P. (2001). Regulation of leptin production: Sympathetic nervous system interactions. Journal of Molecular Medicine, 79, 8–20.PubMedCrossRefGoogle Scholar
  47. Reyes Del Paso, G. A., Langewitz, W., Mulder, L. J., van Roon, A., & Duschek, S. (2013). The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: A review with emphasis on a reanalysis of previous studies. Psychophysiology, 50, 477–487.PubMedCrossRefGoogle Scholar
  48. Riva, G., Martini, G., Milan, A., Paglieri, C., Chiandussi, L., & Veglio, F. (2001). Obesity and autonomic function in adolescence. Clinical & Experimental Hypertenion, 23, 57–67.CrossRefGoogle Scholar
  49. Rodríguez-Colón, S. M., He, F., Shaffer, M. L., Li, X., Vgontzas, A. N., Bixler, E. O., & Liao, D. (2011). Insomnia symptoms and sleep duration are associated with impaired cardiac autonomic modulation in children. Neuroscience & Medicine, 2, 288–294.CrossRefGoogle Scholar
  50. Roenneberg, T., Kuehnle, T., Pramstaller, P. P., Ricken, J., Havel, M., Guth, A., & Merrow, M. (2004). A marker for the end of adolescence. Current Biology, 14, R1038–R1039.PubMedCrossRefGoogle Scholar
  51. Sallis, J. F., Condon, S. A., Goggin, K. J., Roby, J. J., Kolody, B., & Alcaraz, J. E. (1993). The development of self-administered physical activity surveys for 4th grade students. Research Quarterly for Exercise and Sport, 64, 25–31.PubMedCrossRefGoogle Scholar
  52. Scheer, F. A., Hilton, M. F., Mantzoros, C. S., & Shea, S. A. (2009). Adverse metabolic and cardiovascular consequences of circadian misalignment. Proceedings of the National Academy of Sciences USA, 106, 4453–4458.CrossRefGoogle Scholar
  53. Spiegel, K., Leproult, R., L’Hermite-Baleriauz, M., Copinschi, G., Penev, P. D., & van Cauter, E. (2004a). Leptin levels are dependent on sleep duration: Relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. Journal of Clinical of Endocrinology & Metabolism, 89, 5762–5771.CrossRefGoogle Scholar
  54. Spiegel, K. S., Tasali, E., Penev, P., & van Cauter, E. (2004b). Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Annals of Internal Medicine, 141, 846–850.PubMedCrossRefGoogle Scholar
  55. Tasali, E., Leproult, R., Ehrmann, D. A., & van Cauter, E. (2008). Slow-wave sleep and the risk of type 2 diabetes in humans. Proceedings of the National Academy of Sciences of the United States of America, 105, 1044–1049.PubMedCentralPubMedCrossRefGoogle Scholar
  56. Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. (1996). Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation, 93, 1043–1065.CrossRefGoogle Scholar
  57. Tochikubo, O., Ikeda, A., Miyajima, E., & Ishii, M. (1996). Effects of insufficient sleep on blood pressure monitored by a new multibiomedical recorder. Hypertension, 27, 1318–1324.PubMedCrossRefGoogle Scholar
  58. Tonetti, L., Fabbri, M., & Natale, V. (2008). Sex difference in sleep-time preference and sleep need: A cross-sectional survey among Italian pre-adolescents, adolescents, and adults. Chronobiology International: The Journal of Biological & Medical Rhythm Research, 25(5), 745–759.CrossRefGoogle Scholar
  59. van Baak, M. A. (2001). The peripheral sympathetic nervous system in human obesity. Obesity Reviews, 2, 3–14.PubMedCrossRefGoogle Scholar
  60. Walter, L. M., Foster, A. M., Patterson, R. R., Anderson, V., Davey, M. J., Nixon, G. M., et al. (2009). Cardiovascular variability during periodic leg movements in sleep in children. Sleep, 32(8), 1093–1099.PubMedCentralPubMedGoogle Scholar
  61. Wang, G., Xu, G., Liu, Z., Lu, N., Ma, R., & Zhang, E. (2013). Sleep patterns and sleep disturbances among Chinese school-aged children: Prevalence and associated factors. Sleep Medicine, 14, 45–52.PubMedCrossRefGoogle Scholar
  62. Wanger, J., Clausen, J. L., Coates, A., & Pedersen, O. F. (2005). Standardisation of the measurement of lung volumes. European Respiratory Journal, 26, 511–522.PubMedCrossRefGoogle Scholar
  63. Wawryk, A. M., Bates, D. J., & Couper, J. J. (1997). Power spectral analysis of heart rate variability in children and adolescents with IDDM. Diabetes Care, 20, 1416–1421.PubMedCrossRefGoogle Scholar
  64. World Health Organization. (2008). Obesity and overweight. Retrieved March 1, 2008 from
  65. Wolfson, A. R., & Carskadon, M. A. (1998). Sleep schedules and daytime functioning in adolescents. Child Development, 69, 875–887.PubMedCrossRefGoogle Scholar
  66. Yakinci, C., Mungen, B., Karabiber, H., Tayfun, M., & Evereklioglu, C. (2000). Autonomic nervous system functions in obese children. Brain & Development, 22, 151–153.CrossRefGoogle Scholar
  67. Zhong, X., Hilton, H. J., Gates, G. J., Jelic, S., Stern, Y., Bartels, M. N., & Basner, R. C. (2005). Increased sympathetic and decreased parasympathetic cardiovascular modulation in normal humans with acute sleep deprivation. Journal of Applied Physiology, 98, 2024–2032.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Denise C. Jarrin
    • 1
  • Jennifer J. McGrath
    • 2
  • Paul Poirier
    • 3
  • QUALITY Cohort Collaborative Group
    • 4
  1. 1.École de psychologie, Centre de recherche Université Laval Robert-GiffardUniversité LavalQuebecCanada
  2. 2.Pediatric Public Health Psychology Laboratory, Department of PsychologyConcordia UniversityMontrealCanada
  3. 3.Institut universitaire de cardiologie et de pneumologie de Québec & Faculté de pharmacieUniversité Laval, Pavillon Ferdinand-VandryQuebecCanada
  4. 4.Centre de recherche du CHU Sainte-JustineMontrealCanada

Personalised recommendations