The Journal of Technology Transfer

, Volume 42, Issue 2, pp 425–440 | Cite as

Social web knowledge sharing and innovation performance in knowledge-intensive manufacturing SMEs

  • Pedro Soto-AcostaEmail author
  • Simona Popa
  • Daniel Palacios-Marqués


This paper develops an integrative research model to assess the effect of different factors on social web knowledge sharing and its effect on innovation performance in manufacturing small and medium-sized enterprises (SMEs). In addition, this study analyzes whether social web knowledge sharing may be a mediator in the relationship between human resource (HR) practices and innovation performance. The proposed research model and its associated hypotheses were tested by using partial least squares structural equation modeling on a dataset of manufacturing SMEs. This study contributes to research seeking to understand the factors affecting social web knowledge sharing by demonstrating that technological and organizational factors have greater impact than environmental factors on social web knowledge sharing. It also contributes to research by exploring the indirect effects of the social influence of HR practices on organizational innovation performance by offering evidence on the mediating effect of social web knowledge sharing in the relationship between HR practices and organizational innovation performance in manufacturing SMEs.


Social web Social media Knowledge management Technology Innovation performance SMEs 

JEL Classification

M15 O31 


  1. Alavi, M., & Leidner, D. E. (2001). Review: Knowledge management and knowledge management systems: Conceptual foundations and research issues. MIS Quarterly, 25(1), 107–136.CrossRefGoogle Scholar
  2. Anderson, N. R., De Dreu, C., & Nijstad, B. A. (2004). The routinization of innovation research: A constructively critical review of the state-of-the-science. Journal of Organizational Behavior, 25(2), 147–203.CrossRefGoogle Scholar
  3. Bagozzi, R. P., Yi, Y., & Phillips, L. W. (1991). Assessing construct validity in organizational research. Administrative Science Quarterly, 36(3), 421–458.CrossRefGoogle Scholar
  4. Barclay, D., Higgins, C., & Thompson, R. (1995). The partial least squares (PLS) approach to causal modeling: Personal computer adoption and use as an illustration. Technology Studies, 2(2), 285–309.Google Scholar
  5. Bharadwaj, A. S. (2000). A resource-based perspective on information technology capability and firm performance: An empirical investigation. MIS Quarterly, 24(1), 169–196.CrossRefGoogle Scholar
  6. Bordonaba-Juste, V., Lucia-Palacios, L., & Polo-Redondo, Y. (2012). Antecedents and consequences of e-business use for European retailers. Internet Research, 22(5), 532–550.CrossRefGoogle Scholar
  7. Brown, J. S., & Duguid, P. (2000). Balancing act: How to capture knowledge without killing it. Harvard Business Review, 78(3), 73–80.Google Scholar
  8. Capon, N., Farley, J. U., Hulbert, J., & Lehmann, D. R. (1992). Profiles of product innovators among large US manufacturers. Management Science, 38(2), 157–169.CrossRefGoogle Scholar
  9. Cegarra-Navarro, J.-G., Soto-Acosta, P., & Wensley, A. K. P. (2016). Structured knowledge processes and firm performance: The role of organizational agility. Journal of Business Research, 69(5), 1544–1549.CrossRefGoogle Scholar
  10. Chan, F. T. S., Chong, A. Y.-L., & Zhou, L. (2012). An empirical investigation of factors affecting e-collaboration diffusion in SMEs. International Journal of Production Economics, 138(2), 329–344.CrossRefGoogle Scholar
  11. Chau, P. Y. K., & Tam, K. Y. (1997). Factors affecting the adoption of open systems: An exploratory study. MIS Quarterly, 21(1), 1–25.CrossRefGoogle Scholar
  12. Chin, W. W. (1998). The partial least squares approach to structural equation modelling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 295–336). Mahwah, NJ: Lawrence Erlbaum Associates Publisher.Google Scholar
  13. Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A partial least squares latent variable modelling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic mail emotion/adoption study. Information Systems Research, 14(2), 189–217.CrossRefGoogle Scholar
  14. Choy, C. S., Yew, W. K., & Lin, B. (2006). Criteria for measuring KM performance outcomes in organisations. Industrial Management & Data Systems, 106(7), 917–936.CrossRefGoogle Scholar
  15. Collins, C. J., & Smith, K. G. (2006). Knowledge exchange and combination: The role of human resource practices in the performance of high-technology firms. Academy of Management Journal, 49(3), 544–560.CrossRefGoogle Scholar
  16. Colomo-Palacios, R., Casado-Lumbreras, C., Soto-Acosta, P., & García-Crespo, Á. (2011). Using the affect grid to measure emotions in software requirements engineering. Journal of Universal Computer Science, 17(9), 1281–1298.Google Scholar
  17. Colomo-Palacios, R., Casado-Lumbreras, C., Soto-Acosta, P., & García-Crespo, Á. (2013). Decisions in software development projects management. An exploratory study. Behaviour & Information Technology, 32(11), 1077–1085.CrossRefGoogle Scholar
  18. Colomo-Palacios, R., Casado-Lumbreras, C., Soto-Acosta, P., García-Peñalvo, F. J., & Tovar, E. (2014). Project managers in global software development teams: A study of the effects on productivity and performance. Software Quality Journal, 22(1), 3–19.CrossRefGoogle Scholar
  19. Darroch, J. (2003). Developing a measure of knowledge management behaviors and practices. Journal of Knowledge Management, 7(5), 41–54.CrossRefGoogle Scholar
  20. Darroch, J. (2005). Knowledge management, innovation and firm performance. Journal of Knowledge Management, 9(3), 101–115.CrossRefGoogle Scholar
  21. Del Aguila-Obra, A. R., & Padilla-Melendez, A. (2008). Organizational factors affecting Internet technology adoption. Internet Research, 16(1), 94–110.CrossRefGoogle Scholar
  22. Del Giudice, M., & Della Peruta, M. R. (2016). The impact of IT-based knowledge management systems on internal venturing and innovation: A structural equation modeling approach to corporate performance. Journal of Knowledge Management, 20(3), 484–498.CrossRefGoogle Scholar
  23. Del Giudice, M., Della Peruta, M. R., & Maggioni, V. (2013). Collective knowledge and organizational routines within academic communities of practice: An empirical research on science-entrepreneurs. Journal of the Knowledge Economy, 4(3), 260–278.CrossRefGoogle Scholar
  24. Del Giudice, M., Della Peruta, M. R., & Maggioni, V. (2015). A model for the diffusion of knowledge sharing technologies inside private transport companies. Journal of Knowledge Management, 19(3), 611–625.CrossRefGoogle Scholar
  25. Del Giudice, M., & Maggioni, V. (2014). Managerial practices and operative directions of knowledge management within inter-firm networks: A global view. Journal of Knowledge Management, 18(5), 841–846.CrossRefGoogle Scholar
  26. Delery, J. E., & Doty, D. H. (1996). Modes of theorizing in strategic human resource management: Test of universalistic contingency, and configurational performance predictions. Academy of Management Journal, 39(4), 802–835.CrossRefGoogle Scholar
  27. Della Peruta, M. R., Del Giudice, M., Lombardi, R., & Soto-Acosta, P. (2016). Open innovation, product development, and inter-company relationships within regional knowledge clusters. Journal of the Knowledge Economy,. doi: 10.1007/s13132-016-0356-x.Google Scholar
  28. Devaraj, S., & Kholi, R. (2003). Performance impacts of information technology: Is actual usage the missing link? Management Science, 49(3), 273–289.CrossRefGoogle Scholar
  29. Eisenberger, R., Armeli, S., Rexwinkel, B., Lynch, P. D., & Roades, L. (2001). Reciprocation of perceived organizational support. Journal of Applied Psychology, 86(1), 42–51.CrossRefGoogle Scholar
  30. Fornell, C., & Larcker, F. D. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50.CrossRefGoogle Scholar
  31. Fox, S. (2000). Communities of practice, foucault and actor network theory. Journal of Management Studies, 37(6), 853–867.CrossRefGoogle Scholar
  32. Friesike, S., Widenmayer, B., Gassmann, O., & Schildhauer, T. (2015). Opening science: Towards an agenda of open science in academia and industry. Journal of Technology Transfer, 40(4), 581–601.CrossRefGoogle Scholar
  33. Gardner, H. K. (2012). Performance pressure as a doble-edged sword: Enhancing team motivation but undermining the use of team knowledge. Administrative Science Quarterly, 57(1), 1–46.CrossRefGoogle Scholar
  34. Griffin, A., & Hauser, J. R. (1996). Integrating R&D and marketing: A review and analysis of the literature. Journal of Product Innovation Management, 13(3), 191–215.CrossRefGoogle Scholar
  35. Gu, V. C., Cao, Q., & Duan, W. (2012). Unified modeling language (UML) IT adoption—A holistic model of organizational capabilities perspective. Decision Support Systems, 54(1), 257–269.CrossRefGoogle Scholar
  36. Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis (5th ed.). London: Prentice-Hall.Google Scholar
  37. Hanlon, S. C., & Taylor, R. R. (1991). An examination of changes in work group communication behaviors following installation of a gain sharing plan. Group and Organization Studies, 16, 238–267.CrossRefGoogle Scholar
  38. Hernández-López, A., Colomo-Palacios, R., García-Crespo, Á., & Soto-Acosta, P. (2010). Trust building process for global software development teams: A review from the Literature. International Journal of Knowledge Society Research, 1(1), 65–82.Google Scholar
  39. Huy, L. V., Rowe, F., Truex, D., & Huynh, M. Q. (2012). An empirical study of determinants of e-commerce adoption in SMEs in Vietnam an economy in transition. Journal of Global Information Management, 20(3), 23–54.CrossRefGoogle Scholar
  40. Jardim-Goncalves, R., Popplewell, K., & Grilo, A. (2012). Sustainable interoperability: The future of Internet based industrial enterprises. Computers in Industry, 63(8), 731–738.CrossRefGoogle Scholar
  41. Jayasingam, S., Ansari, M. A., Ramayah, T., & Jantan, M. (2013). Knowledge management practices and performance: Are they truly linked? Knowledge Management Research & Practice, 11(3), 255–264.CrossRefGoogle Scholar
  42. Joo, J., & Normatov, I. (2013). Determinants of collective intelligence quality: Comparison between Wiki and Q&A services in English and Korean users. Service Business, 7(4), 687–711.CrossRefGoogle Scholar
  43. Kuan, K. Y., & Chau, Y. K. (2001). A perception model for EDI adoption in small businesses using a technology-organization-environment framework. Information & Management, 38(1), 507–521.CrossRefGoogle Scholar
  44. Lim, S., Trimi, S., & Lee, H. (2010). Web 2.0 service adoption and entrepreneurial orientation. Service Business, 4(3–4), 197–207.CrossRefGoogle Scholar
  45. Lopez-Cabrales, A., Pérez-Luño, A., & Cabrera, R. V. (2009). Knowledge as a mediator between HRM practices and innovative activity. Human Resource Management, 48(4), 485–503.CrossRefGoogle Scholar
  46. López-Nicolás, C., & Meroño-Cerdán, A. L. (2011). Strategic knowledge management, innovation and performance. International Journal of Information Management, 31(6), 502–509.CrossRefGoogle Scholar
  47. Lopez-Nicolas, C., & Soto-Acosta, P. (2010). Analyzing ICT adoption and use effects on knowledge creation: An empirical investigation in SMEs. International Journal of Information Management, 30(6), 521–528.CrossRefGoogle Scholar
  48. Lucio-Nieto, T., Colomo-Palacios, R., Soto-Acosta, P., Popa, S., & Amescua-Seco, A. (2012). Implementing an IT service information management framework: The case of COTEMAR. International Journal of Information Management, 32(6), 589–594.CrossRefGoogle Scholar
  49. MacKinnon, D. P., Warsi, G., & Dwyer, J. H. (1995). A simulation study of mediated effect measures. Multivariate Behavioral Research, 30(1), 41–62.CrossRefGoogle Scholar
  50. Meroño-Cerdan, A. L., & Soto-Acosta, P. (2005). Examining e-business impact on firm performance through website analysis. International Journal of Electronic Business, 3(6), 583–598.CrossRefGoogle Scholar
  51. Meroño-Cerdan, A. L., & Soto-Acosta, P. (2007). External web content and its influence on organizational performance. European Journal of Information Systems, 16(1), 66–80.CrossRefGoogle Scholar
  52. Meroño-Cerdan, A. L., Soto-Acosta, P., & López-Nicolás, C. (2008a). Analyzing collaborative technologies’ effect on performance through intranet use orientations. Journal of Enterprise Information Management, 21(1), 39–51.CrossRefGoogle Scholar
  53. Meroño-Cerdan, A., Soto-Acosta, P., & López-Nicolás, C. (2008b). How do collaborative technologies affect innovation in SMEs? International Journal of e-Collaboration, 4(4), 33–50.CrossRefGoogle Scholar
  54. Nahapiet, J., & Ghoshal, S. (1998). Social capital, intellectual capital, and the organizational advantage. Academy of Management Review, 23, 242–266.Google Scholar
  55. Nonaka, I. (1994). A dynamic theory of organizational knowledge creation. OrganizationScience, 5(1), 14–37.Google Scholar
  56. Nonaka, I., & Takeuchi, H. (1995). The knowledge-creating company: How Japanese companies create the dynamics of innovation. New York: Oxford University Press.Google Scholar
  57. Nunnally, J. C. (1967). Psychometric Theory. New York, NY: McGraw-Hill.Google Scholar
  58. OECD. (2005). Oslo Manual. Guidelines for collecting and interpreting innovation data. doi: 10.1787/9789264013100-en.
  59. Palacios-Marqués, D., Merigó, J. M., & Soto-Acosta, P. (2015a). Online social networks as an enabler of innovation in organizations. Management Decision, 53(9), 1906–1920.CrossRefGoogle Scholar
  60. Palacios-Marqués, D., Soto-Acosta, P., & Merigó, J. M. (2015b). Analyzing the effects of technological, organizational and competition factors on Web knowledge exchange in SMEs. Telematics and Informatics, 32(1), 23–32.CrossRefGoogle Scholar
  61. Pan, Z. (2012). Opinions and networks: How do they effect each other. Computational Economics, 39(2), 157–171.CrossRefGoogle Scholar
  62. Park, R., & Kim, J. (2013). Individual employees’ responses to group incentives: The moderating role of innovation. Journal of Business Psychology, 28(2), 175–187.CrossRefGoogle Scholar
  63. Pérez-López, S., & Alegre, J. (2012). Information technology competency, knowledge processes and firm performance. Industrial Management & Data Systems, 112(4), 644–662.CrossRefGoogle Scholar
  64. Peterson, S. J., & Luthans, F. (2006). The impact of financial and nonfinancial incentives on business-unit outcomes over time. Journal of Applied Psychology, 91(1), 156–165.CrossRefGoogle Scholar
  65. Podsakoff, P. M., & Organ, D. W. (1986). Self-reports in organizational research: Problems and prospects. Journal of Management, 12(4), 531–544.CrossRefGoogle Scholar
  66. Popa, S., Soto-Acosta, P., & Loukis, E. (2016). Analyzing the complementarity of web infrastructure and eInnovation for business value generation. Program: Electronic Library and Information Systems, 50(1), 118–134.CrossRefGoogle Scholar
  67. Porter, M. E. (1985). Competitive Advantage. New York: Free Press.Google Scholar
  68. Rosenzweig, S. (2016). The effects of diversified technology and country knowledge on the impact of technological innovation. Journal of Technology Transfer,. doi: 10.1007/s10961-016-9492-5.Google Scholar
  69. San Martín, S., López-Catalán, B., & Ramón-Jerónimo, M. A. (2012). Factors determining firms’ perceived performance of mobile commerce. Industrial Management & Data Systems, 112(6), 946–963.CrossRefGoogle Scholar
  70. Sigala, M., & Chalkiti, K. (2014). Investigating the exploitation of Web 2.0 for knowledge management in the Greek tourism industry: An utilisation-importance analysis. Computers in Human Behavior, 30(1), 800–812.CrossRefGoogle Scholar
  71. Snieska, V., & Valodkiene, G. (2015). Impact of innovations upon economic growth during recession. Technological and Economic Development of Economy, 21(4), 626–642.CrossRefGoogle Scholar
  72. Soto-Acosta, P., Casado-Lumbreras, C., & Cabezas-Isla, F. (2010a). Shaping human capital in software development teams: The case of mentoring enabled by semantics. IET Software, 4(6), 445–452.CrossRefGoogle Scholar
  73. Soto-Acosta, P., Colomo-Palacios, R., & Popa, S. (2014a). Web knowledge sharing and its effect on innovation: An empirical investigation in SMEs. Knowledge Management Research & Practice, 12(1), 103–113.CrossRefGoogle Scholar
  74. Soto-Acosta, P., Martinez-Conesa, I., & Colomo-Palacios, R. (2010b). An empirical analysis of the relationship between IT training sources and IT value. Information Systems Management, 27(3), 274–283.CrossRefGoogle Scholar
  75. Soto-Acosta, P., & Meroño-Cerdan, A. (2006). An analysis and comparison of web development between local governments and SMEs in Spain. International Journal of Electronic Business, 4(2), 191–203.CrossRefGoogle Scholar
  76. Soto-Acosta, P., & Meroño-Cerdan, A. (2008). Analyzing e-Business value creation from a resource-based perspective. International Journal of Information Management, 28(1), 49–60.CrossRefGoogle Scholar
  77. Soto-Acosta, P., Perez-Gonzalez, D., & Popa, S. (2014b). Determinants of Web 2.0 technologies for knowledge sharing in SMEs. Service Business, 8(3), 425–438.CrossRefGoogle Scholar
  78. Soto-Acosta, P., Placer-Maruri, E., & Perez-Gonzalez, D. (2016). A case analysis of a product lifecycle information management framework for SMEs. International Journal of Information Management, 36(2), 240–244.CrossRefGoogle Scholar
  79. Soto-Acosta, P., Popa, S., & Palacios-Marqués, D. (2015). E-business, organizational innovation and firm performance in manufacturing SMEs: An empirical study in Spain. Technological and Economic Development of Economy,. doi: 10.3846/20294913.2015.1074126.Google Scholar
  80. Templeton, G. F., Lewis, B. R., & Snyder, C. A. (2002). Development of a measure for the organizational learning construct. Journal of Management Information Systems, 19(2), 175–218.Google Scholar
  81. Tenenhaus, M., Esposito, V., Chatelin, Y., & Lauro, C. (2008). PLS path modelling. Computational Statistics & Data Analysis, 48, 159–205.CrossRefGoogle Scholar
  82. Thong, J. Y. L. (1999). An integrated model of information systems adoption in small businesses. Journal of Management Information Systems, 15(4), 187–214.CrossRefGoogle Scholar
  83. Tiwana, A. (2003). The knowledge management toolkit: Orchestrating IT, strategy and knowledge platform. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  84. Tornatzky, L. G., & Fleischer, M. (1990). The process of technological innovation. Lexington. MA: Lexington Books, Lexington.Google Scholar
  85. Tsui, A. S., Pearce, J. L., & Porter, L. W. (1997). Alternative approaches to the employee-organization relationship: Does investment in employees pay off? Academy of Management Journal, 40, 1089–1121.CrossRefGoogle Scholar
  86. Valkokari, K., Paasi, J., & Rantala, T. (2012). Managing Knowledge within networked Innovation. Knowledge Management Research & Practice, 10(1), 27–40.CrossRefGoogle Scholar
  87. Vila, L. E., Cabrer, B., & Pavía, J. M. (2015). On the relationship between knowledge creation and economic performance. Technological and Economic Development of Economy, 21(4), 539–556.CrossRefGoogle Scholar
  88. Wang, Y., & Ahmed, P. (2009). The moderating effect of the business strategic orientation on e-commerce adoption: Evidence from UK family run SMEs. Journal of Strategic Information System, 18(1), 16–30.CrossRefGoogle Scholar
  89. Wang, Y. M., Wang, Y. S., & Yang, Y. F. (2010). Understanding the determinants of RFID adoption in the manufacturing industry. Technological Forecasting and Social Change, 77, 803–815.CrossRefGoogle Scholar
  90. Wayne, S. J., Shore, L. M., & Liden, R. C. (1997). Perceived organizational support and leader-member exchange: A social exchange perspective. Academy of Management Journal, 40, 82–111.CrossRefGoogle Scholar
  91. Xin, J. Y., Ramayah, T., Soto-Acosta, P., Popa, S., & Ping, T. A. (2014). Analyzing the use of the Web 2.0 for brand awareness and competitive advantage: An empirical study in the Malaysian hospitability industry. Information Systems Management, 31(2), 96–103.CrossRefGoogle Scholar
  92. Xu, S., Zhu, K., & Gibbs, J. (2004). Global technology, local adoption: A cross-country investigation of Internet adoption by companies in the United States and China. Electronic Markets, 14(1), 13–24.CrossRefGoogle Scholar
  93. Youndt, M. A., Snell, S. A., Dean, J. W., Jr., & Lepak, D. P. (1996). Human resource management, manufacturing strategy and firm performance. Academy of Management Journal, 39(4), 836–866.CrossRefGoogle Scholar
  94. Zhu, K., & Kraemer, K. (2005). Post-adoption variations in usage and value of e-business by organizations: Cross-country evidence from the retail industry. Information Systems Research, 16(1), 61–84.CrossRefGoogle Scholar
  95. Zhu, K., Kraemer, K., & Xu, S. (2003). Electronic business adoption by European firms: A cross-country assessment of the facilitators and inhibitors. European Journal of Information Systems, 12(4), 251–268.CrossRefGoogle Scholar
  96. Zhu, K., Kraemer, K. L., & Xu, S. (2006). The process of innovation assimilation by firms in different countries: A technology diffusion perspective on e-business. Management Science, 52(10), 1557–1576.CrossRefGoogle Scholar
  97. Zhu, K., Kraemer, K. L., Xu, S., & Dedrick, J. (2004). Information technology payoff in e-business environments: An international perspective on value creation of e-business in the financial services industry. Journal of Management Information Systems, 21(1), 17–54.Google Scholar
  98. Zhu, Y., Li, Y., Wang, W., & Chen, J. (2010). What leads to the post-implementation success of erp? An empirical study of the Chinese retail industry. International Journal of Information Management, 30(3), 265–276.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Pedro Soto-Acosta
    • 1
    Email author
  • Simona Popa
    • 1
  • Daniel Palacios-Marqués
    • 2
  1. 1.Department of Management and FinanceUniversity of MurciaMurciaSpain
  2. 2.Department of Business AdministrationPolytechnic University of ValenciaValenciaSpain

Personalised recommendations