On the Multifractal Analysis of Branching Random Walk on Galton–Watson Tree with Random Metric


We consider a branching random walk \(S_nX(t)\) on a supercritical random Galton–Watson tree. We compute the Hausdorff and packing dimensions of the level set \(E(\alpha )\) of infinite branches in the boundary of tree endowed with random metric along which the average of \(S_n X(t)/n\) have a given limit point.

This is a preview of subscription content, access via your institution.


  1. 1.

    Attia, N., Barral, J.: Hausdorff and packing spectra, large deviations and free energy for branching random walks in \({\mathbb{R}}^d\). Commun. Math. Phys. 331, 139–187 (2014)

    Article  Google Scholar 

  2. 2.

    Attia, N.: On the exact dimension of Mandelbrot measure. Probab. Math. Stat. 39, 299–314 (2019)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Attia, N.: On the multifractal analysis of the branching random walk in \({\mathbb{R}}^d\). J. Theor. Probab. 27, 1329–1349 (2014)

    Article  Google Scholar 

  4. 4.

    Barral, J.: Moments, continuité, et analyse multifractale des martingales de Mandelbrot. Probab. Theory Relat. Fields 113, 535–569 (1999)

    Article  Google Scholar 

  5. 5.

    Barral, J.: Continuity of the multifractal spectrum of a statistically self-similar measure. J. Theor. Probab. 13, 1027–1060 (2000)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Barral, J.: Generalized vector multiplicative cascades. Adv. Appl. Probab. 33, 874–895 (2001)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Barral, J., Qu, Y.-H.: On the higher dimensional multifractal analysis. Discret. Contin. Dyn. Syst. A 32, 1977–1995 (2012)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Barreira, L., Saussol, B., Schmeling, J.: Higher-dimensional multifractal analysis. J. Math. Pures Appl. 9(81), 67–91 (2002)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Biggins, J.D.: Martingale convergence in the branching random walk. J. Appl. Probab. 14, 25–37 (1977)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Biggins, J.D., Hambly, B.M., Jones, O.D.: Multifractal spectra for random self-similar measures via branching processes. Adv. Appl. Probab. 43, 1–39 (2011)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Cutler, C.D.: Connecting ergodicity and dimension in dynamical systems. Ergod. Theory Dyn. Syst. 10, 451–462 (1990)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. Wiley, Hoboken (2003)

    Google Scholar 

  13. 13.

    Falconer, K.J.: The multifractal spectrum of statistically self-similar measures. J. Theor. Probability 7(3), 681–702 (1994)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Fan, A.H.: Sur les dimensions de mesures. Stud. Math. 111(1), 1–17 (1994)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Feng, D.-J., Huang, W.: Lyapunov spectrum of asymptotically sub-additive potentials. Commun. Math. Phys. 297, 1–43 (2010)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Feng, D.-J., Lau, K.-S., Wu, J.: Ergodic limits on the conformal repellers. Adv. Math. 169, 58–91 (2002)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Holley, R., Waymire, E.C.: Multifractal dimensions and scaling exponents for strongly bounded random cascades. Ann. Appl. Probab. 2, 819–845 (1992)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Kahane, J.-P., Peyrière, J.: Sur certaines martingales de Benoit Mandelbrot. Adv. Math. 22, 131–145 (1976)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Liu, Q., Rouault, A.: On two measures defined on the boundary of a branching tree. In: Athreya, K.B., Jagers, P. (eds.) Classical and Modern Branching Processes. IMA Volumes in Mathematics Applications, vol. 84, pp. 187–201. Springer, New York (1997)

    Google Scholar 

  20. 20.

    Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces, Fractals and Rectifiability. Cambridges Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  21. 21.

    Molchan, G.M.: Scaling exponents and multifractal dimensions for independent random cascades. Commun. Math. Phys. 179, 681–702 (1996)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Olsen, L.: Random Geometrically Graph Directed Self-Similar Multifractals. Pitman Research Notes Mathematics Series, vol. 307. CRC Press, Boca Raton (1994)

    Google Scholar 

Download references


The author thanks Professor Julien Barral for suggesting the idea of this work. He also thanks the anonymous referees for their valuable comments and suggestions that led to improvement of the manuscript.

Author information



Corresponding author

Correspondence to Najmeddine Attia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Attia, N. On the Multifractal Analysis of Branching Random Walk on Galton–Watson Tree with Random Metric. J Theor Probab 34, 90–102 (2021). https://doi.org/10.1007/s10959-019-00984-z

Download citation


  • Galton–Watson tree
  • Random walk
  • Hausdorff and packing dimensions

Mathematics Subject Classification (2010)

  • 60G50
  • 11K55