Skip to main content
Log in

Comparison Techniques for Competing Brownian Particles

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Consider a finite system of Brownian particles on the real line. Each particle has drift and diffusion coefficients depending on its current rank relative to other particles, as in Karatzas et al. (Ann I H Poincare-PR 52(1):323–354, 2016). We prove some comparison results for these systems. As an example, we show that if we remove a few particles from the top, then the gaps between adjacent particles become stochastically larger, the local times of collision between adjacent particles become stochastically smaller, and the remaining particles shift upward, in the sense of stochastic ordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banner, A.D., Fernholz, E.R., Ichiba, T., Karatzas, I., Papathanakos, V.: Hybrid atlas models. Ann. Appl. Probab. 21(2), 609–644 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Banner, A.D., Fernholz, E.R., Karatzas, I.: Atlas models of equity markets. Ann. Appl. Probab. 15(4), 2296–2330 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banner, A.D., Ghomrasni, R.: Local times of ranked continuous semimartingales. Stoch. Process. Appl. 118(7), 1244–1253 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruggeman, C., Sarantsev, A.: Multiple collisions in systems of competing Brownian particles. Bernoulli. 24(1), 156–201 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chatterjee, S., Pal, S.: A phase transition behavior for Brownian motions interacting through their ranks. Probab. Theory Rel. Fields 147(1–2), 123–159 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dembo, A., Shkolnikov, M., Varadhan, S.R.S., Zeitouni, O.: Large deviations for diffusions interacting through their ranks. Comm. Pure Appl. Math. 69(7), 1259–1313 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dembo, A., Tsai, L.-C.: Equilibrium fluctuation of the atlas model. Ann. Probab. 45(6B), 4529–4560 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fernholz, E.R., Ichiba, T., Karatzas, I.: Two Brownian particles with rank-based characteristics and skew-elastic collisions. Stoch. Process. Appl. 123(8), 2999–3026 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Haddad, J.-P., Mazumdar, R.R., Piera, F.J.: Pathwise comparison results for stochastic fluid networks. Queueing Syst. 66(2), 155–168 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Harrison, J.M.: The heavy traffic approximation for single server queues in series. J. Appl. Probab. 10, 613–629 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harrison, J.M.: The diffusion approximation for tandem queues in heavy traffic. Adv. Appl. Probab. 10(4), 886–905 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Harrison, J.M., Reiman, I.M.: Reflected Brownian motion on an orthant. Ann. Probab. 9(2), 302–308 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Harrison, J.M., Williams, J.M.: Brownian models of open queueing networks with homogeneous customer populations. Stochastics 22(2), 77–115 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ichiba, T.: Topics in Multi-dimensional Diffusion Theory: Attainability, Reflection, Ergodicity and Rankings. ProQuest LLC, Ann Arbor (2009). Thesis (Ph.D.)—Columbia University

  15. Ichiba, T., Karatzas, I.: On collisions of Brownian particles. Ann. Appl. Probab. 20(3), 951–977 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ichiba, T., Karatzas, I., Shkolnikov, M.: Strong solutions of stochastic equations with rank-based coefficients. Probab. Theory Rel. Fields 156(1–2), 229–248 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ichiba, T., Pal, S., Shkolnikov, M.: Convergence rates for rank-based models with applications to portfolio theory. Probab. Theory Rel. Fields 1–34, (2012)

  18. Jourdain, B.: Diffusion processes associated with nonlinear evolution equations for signed measures. Methodol. Comput. Appl. Probab. 2(1), 69–91 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jourdain, B., Malrieu, F.: Propagation of chaos and Poincare inequalities for a system of particles interacting through their cdf. Ann. Appl. Probab. 18(5), 1706–1736 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jourdain, B., Reygner, J.: Capital distribution and portfolio performance in the mean-field Atlas model. Ann. Finance. 11(2), 151–198 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jourdain, B., Reygner, J.: Propagation of chaos for rank-based interacting diffusions and long time behaviour of a scalar quasilinear parabolic equation. Stoch. Partial Differ. Equ. Anal. Comput. 1(3), 455–506 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Jourdain, B., Reygner, J.: The small noise limit of order-based diffusion processes. Electron. J. Probab. 19(29), 1–36 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Karatzas, I., Pal, S., Shkolnikov, M.: Systems of Brownian particles with asymmetric collisions. Ann. I H Poincare-PR. 52(1), 323–354 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Karatzas, I., Sarantsev, A.: Diverse market models of competing Brownian particles with splits and mergers (2014). Available at arXiv:1404.0748

  25. Kella, O., Ramasubramanian, S.: Asymptotic irrelevance of initial conditions for Skorohod reflection mapping on the nonnegative orthant. Math. Oper. Res. 37(2), 301–312 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kella, O., Whitt, W.: Stability and structural properties of stochastic storage networks. J. Appl. Probab. 33(4), 1169–1180 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pal, S., Pitman, J.: One-dimensional Brownian particle systems with rank-dependent drifts. Ann. Appl. Probab. 18(6), 2179–2207 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pal, S., Shkolnikov, M.: Concentration of measure for Brownian particle systems interacting through their ranks. Ann. Appl. Probab. 24(4), 1482–1508 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ramasubramanian, S.: A subsidy-surplus model and the Skorokhod problem in an orthant. Math. Oper. Res. 25(3), 509–538 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Reygner, J.: Chaoticity of the stationary distribution of rank-based interacting diffusions. Electron. Commun. Prob. 20(60), 1–20 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Sarantsev, A.: Infinite systems of competing Brownian particles. Ann. I H Poincare-PR. 53(4), 2279–2315 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sarantsev, A.: Triple and simultaneous collisions of competing Brownian particles. Electron. J. Probab. 20(29), 1–28 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Sarantsev, A.: Two-sided infinite systems of competing Brownian particles. ESAIM Probab. Statist 21, 317–349 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shkolnikov, M.: Competing particle systems evolving by interacting Lévy processes. Ann. Appl. Probab. 21(5), 1911–1932 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shkolnikov, M.: Large systems of diffusions interacting through their ranks. Stoch. Process. Appl. 122(4), 1730–1747 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Williams, R.J.: Semimartingale reflecting Brownian motions in the orthant. In: Stochastic Networks, volume 71 of IMA Vol. Mathematics and Applications, pp. 125–137. Springer, New York (1995)

Download references

Acknowledgements

I would like to thank Ioannis Karatzas, Soumik Pal, Xinwei Feng, Amir Dembo, and Vladas Sidoravicius for help and useful discussion. This research was partially supported by NSF grants DMS 1007563, DMS 1308340, DMS 1405210, and DMS 1409434.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Sarantsev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 5.1

Take a \(d\times d\)-reflection nonsingular \(\mathcal M\)-matrix R and fix a nonempty subset \(J \subseteq \{1, \ldots , d\}\). Then

$$\begin{aligned} 0 \le [R]_J^{-1} \le [R^{-1}]_J. \end{aligned}$$

Proof

Since \(R = I_d - Q\), where \(Q \ge 0\) is a \(d\times d\)-matrix with spectral radius strictly less than one, we can apply the Neumann series:

$$\begin{aligned} R^{-1} = I_d + Q + Q^2 + \cdots \end{aligned}$$
(43)

By Lemma 5.6, \([R]_J = I_{|J|} - [Q]_J\) is also a reflection nonsingular \(\mathcal M\)-matrix, so we have:

$$\begin{aligned}{}[R]_J^{-1} = I_{|J|} + [Q]_J + [Q]_J^2 + \cdots \end{aligned}$$

But from (43) we get:

$$\begin{aligned}{}[R^{-1}]_J = I_{|J|} + [Q]_J + [Q^2]_J + \cdots \end{aligned}$$

That \([Q^k]_J \ge [Q]_J^k\) for \(k = 1, 2, 3, \ldots \) can be proved by induction using Lemma 5.2. The rest is trivial. \(\square \)

Lemma 5.2

Take nonnegative matrices A (\(m\times d\)) and B (\(d\times n\)), and let \(I \subseteq \{1, \ldots , m\}\), \(J \subseteq \{1, \ldots , d\}\), \(K \subseteq \{1, \ldots , n\}\) be nonempty subsets. Then

$$\begin{aligned}{}[A]_{IJ}[B]_{JK} \le [AB]_{IK}. \end{aligned}$$

Proof

Let \(A = (a_{ij})\) and \(B = (b_{ij})\). Then for \(i \in I\) and \(k \in K\),

$$\begin{aligned} \left( [A]_{IJ}[B]_{JK}\right) _{ik} = \sum \limits _{j \in J}a_{ij}b_{jk} \le \sum \limits _{i=1}^da_{ij}b_{jk} = (AB)_{ik} = \left( [AB]_{IK}\right) _{ik}. \end{aligned}$$

\(\square \)

Lemma 5.3

Take a \(d\times n\)-matrix A and a vector \(a \in \mathbb {R}^n\). Let \(I \subseteq \{1, \ldots , d\}\) be a nonempty subset. Then \([Aa]_I = [A]_{I\times \{1, \ldots , n\}}a\).

The proof is trivial.

Lemma 5.4

Take a \(d\times d\)-nonnegative matrix A and a nonnegative vector \(a \in \mathbb {R}^d\). Let \(J \subseteq \{1, \ldots , d\}\) be a nonempty subset. Then \([Aa]_J \ge [A]_{J}[a]_J\).

The proof is trivial.

Lemma 5.5

Let \(R \le \overline{R}\) be two \(d\times d\)-reflection nonsingular \(\mathcal M\)-matrices. Then \(R^{-1} \ge \overline{R}^{-1} \ge 0\).

Proof

Apply Neumann series again: If

$$\begin{aligned} R = I_d - Q,\ \ \overline{R} = I_d - \overline{Q}, \end{aligned}$$

then \(Q \ge \overline{Q} \ge 0\), and so \(Q^k \ge \overline{Q}^k \ge 0\), \(k = 1, 2, \ldots \). Thus,

$$\begin{aligned} R^{-1} = I_d + Q + Q^2 + \cdots \ge I_d + \overline{Q} + \overline{Q}^2 + \cdots = \overline{R}^{-1}. \end{aligned}$$

\(\square \)

Lemma 5.6

If R is a \(d\times d\)-reflection nonsingular \(\mathcal M\)-matrix and \(I \subseteq \{1, \ldots , d\}\) is a nonempty subset, then \([R]_I\) is also a reflection nonsingular \(\mathcal M\)-matrix.

Proof

Use [32, Lemma 2.1]. A \(d\times d\)-matrix \(R = (r_{ij})\) is a reflection nonsingular \(\mathcal M\)-matrix if and only if

$$\begin{aligned} r_{ii} = 1,\ i = 1, \ldots , d;\ \ r_{ij} \le 0,\ i \ne j, \end{aligned}$$

and, in addition, R is completely-\(\mathcal S\), which means that for every principal submatrix \([R]_J\) of R there exists a vector \(u > 0\) such that \([R]_Ju > 0\). Now, switch from R to \([R]_I\). The same conditions hold:

$$\begin{aligned} r_{ii} = 1,\ i \in I;\ \ r_{ij} \le 0,\ i \ne j,\ i, j \in I, \end{aligned}$$

and, in addition, for every principal submatrix \([[R]_I]_J = [R]_J\) of \([R]_I\), where \(J \subseteq I\), there exists a vector \(u > 0\) such that \([R]_Ju > 0\). This means that \([R]_I\) is also a reflection nonsingular \(\mathcal M\)-matrix. \(\square \)

Lemma 5.7

If \(A \ge B \ge 0\) and \(C \ge D \ge 0\) are matrices such that the matrix products AC and BD are well defined, then \(AC \ge BD \ge 0\).

The proof is trivial.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarantsev, A. Comparison Techniques for Competing Brownian Particles. J Theor Probab 32, 545–585 (2019). https://doi.org/10.1007/s10959-019-00887-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-019-00887-z

Keywords

Mathematics Subject Classification (2010)

Navigation