Skip to main content
Log in

Real Zeroes of Random Analytic Functions Associated with Geometries of Constant Curvature

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let \(\xi _0,\xi _1,\ldots \) be i.i.d. random variables with zero mean and unit variance. We study the following four families of random analytic functions:

$$\begin{aligned} P_n(z) := {\left\{ \begin{array}{ll} \sum \nolimits _{k=0}^n \sqrt{\left( {\begin{array}{c}n\\ k\end{array}}\right) } \xi _k z^k &{}\text { (spherical polynomials)},\\ \sum \nolimits _{k=0}^\infty \sqrt{\frac{n^k}{k!}} \xi _k z^k &{}\text { (flat random analytic function)},\\ \sum \nolimits _{k=0}^\infty \sqrt{\left( {\begin{array}{c}n+k-1\\ k\end{array}}\right) } \xi _k z^k &{}\text { (hyperbolic random analytic functions)},\\ \sum \nolimits _{k=0}^n \sqrt{\frac{n^k}{k!}} \xi _k z^k &{}\text { (Weyl polynomials)}. \end{array}\right. } \end{aligned}$$

We compute explicitly the limiting mean density of real zeroes of these random functions. More precisely, we provide a formula for \(\lim _{n\rightarrow \infty } n^{-1/2}\mathbb {E} N_n[a,b]\), where \(N_n[a,b]\) is the number of zeroes of \(P_n\) in the interval [ab].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. A random variable Z has negative binomial distribution \(\text {NBin}(n,p)\) if \(\mathbb {P}\left[ Z=k\right] = \left( {\begin{array}{c}n+k-1\\ k\end{array}}\right) p^n(1-p)^k\) for \(k=0,1,\ldots \).

References

  1. Angst, J., Poly, G., Viet, H.P.: Universality of the nodal length of bivariate random trigonometric polynomials. arXiv:1610.05360 (2016)

  2. Azaïs, J.-M., Wschebor, M.: Level Sets and Extrema of Random Processes and Fields. Wiley, Hoboken (2009). https://doi.org/10.1002/9780470434642

    Book  MATH  Google Scholar 

  3. Bleher, P., Di, X.: Correlations between zeros of non-Gaussian random polynomials. Int. Math. Res. Not. 46, 2443–2484 (2004)

    Article  MathSciNet  Google Scholar 

  4. Bleher, P., Ridzal, D.: \({\text{ SU }}(1,1)\) random polynomials. J. Stat. Phys. 106(1–2), 147–171 (2002)

    Article  MathSciNet  Google Scholar 

  5. Bloch, A., Pólya, G.: On the roots of certain algebraic equations. Proc. Lond. Math. Soc. 2(33), 102–114 (1931). https://doi.org/10.1112/plms/s2-33.1.102

    Article  MathSciNet  MATH  Google Scholar 

  6. Bogomolny, E., Bohigas, O., Lebœuf, P.: Distribution of roots of random polynomials. Phys. Rev. Lett. 68(18), 2726–2729 (1992). https://doi.org/10.1103/PhysRevLett.68.2726

    Article  MathSciNet  MATH  Google Scholar 

  7. Bogomolny, E., Bohigas, O., Leboeuf, P.: Quantum chaotic dynamics and random polynomials. J. Stat. Phys. 85(5–6), 639–679 (1996). https://doi.org/10.1007/BF02199359

    Article  MathSciNet  MATH  Google Scholar 

  8. Conway, J.B.: Functions of One Complex Variable. Graduate Texts in Mathematics. 11. Springer, New York (1973)

    Book  Google Scholar 

  9. Cramer, H., Leadbetter, M.R.: Stationary and Related Stochastic Processes. Sample Function Properties and Their Applications. Wiley, New York (1967)

    MATH  Google Scholar 

  10. Do, Y., Nguyen, H., Vu, V.: Real roots of random polynomials: expectation and repulsion. Proc. Lond. Math. Soc. (3) 111(6), 1231–1260 (2015). https://doi.org/10.1112/plms/pdv055

    Article  MathSciNet  MATH  Google Scholar 

  11. Do, Y., Nguyen, O., Vu, V.: Roots of random polynomials with coefficients having polynomial growth. arXiv:1507.04994 (2015)

  12. Edelman, A., Kostlan, E.: How many zeros of a random polynomial are real? Bull. Am. Math. Soc. 32(1), 1–37 (1995)

    Article  MathSciNet  Google Scholar 

  13. Esseen, C.G.: On the concentration function of a sum of independent random variables. Z. Wahr. Verw. Gebiete 9, 290–308 (1968). https://doi.org/10.1007/BF00531753

    Article  MathSciNet  MATH  Google Scholar 

  14. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II. Wiley, New York (1966)

    MATH  Google Scholar 

  15. Flasche, H.: Expected number of real roots of random trigonometric polynomials. Stoch. Proc. Appl. 127(12), 3928–3942 (2017). https://doi.org/10.1016/j.spa.2017.03.018

    Article  MathSciNet  MATH  Google Scholar 

  16. Flasche, H., Kabluchko, Z.: Expected number of real zeros of random Taylor series. arXiv:1709.02937 (2017)

  17. Forrester, P.J., Honner, G.: Exact statistical properties of the zeros of complex random polynomials. J. Phys. A 32(16), 2961–2981 (1999)

    Article  MathSciNet  Google Scholar 

  18. Hannay, J.H.: Chaotic analytic zero points: exact statistics for those of a random spin state. J. Phys. A 29(5), L101–L105 (1996). https://doi.org/10.1088/0305-4470/29/5/004

    Article  MathSciNet  MATH  Google Scholar 

  19. Hannay, J.H.: The chaotic analytic function. J. Phys. A 31(49), L755–L761 (1998). https://doi.org/10.1088/0305-4470/31/49/001

    Article  MathSciNet  MATH  Google Scholar 

  20. Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes, volume 51 of University Lecture Series. American Mathematical Society, Providence (2009)

  21. Ibragimov, I., Zaporozhets, D.: On distribution of zeros of random polynomials in complex plane. In: Shiryaev, A., Varadhan, S., Presman, E. (eds.) Prokhorov and Contemporary Probability Theory, pp. 303–323. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-33549-5_18

    Chapter  Google Scholar 

  22. Ibragimov, I.A., Maslova, N.B.: The mean number of real zeros of random polynomials. I. Coefficients with zero mean. Teor. Verojatnost. i Primenen 16, 229–248 (1971)

    MathSciNet  Google Scholar 

  23. Ibragimov, I.A., Maslova, N.B.: The mean number of real zeros of random polynomials. II. Coefficients with a nonzero mean. Teor. Verojatnost. i Primenen. 16, 495–503 (1971)

    MathSciNet  Google Scholar 

  24. Iksanov, A., Kabluchko, Z., Marynych, A.: Local universality for real roots of random trigonometric polynomials. Electron. J. Probab. 21, 19 (2016). https://doi.org/10.1214/16-EJP9

    Article  MathSciNet  MATH  Google Scholar 

  25. Kabluchko, Z., Zaporozhets, D.: Asymptotic distribution of complex zeros of random analytic functions. Ann. Probab. 42(4), 1374–1395 (2014). https://doi.org/10.1214/13-AOP847

    Article  MathSciNet  MATH  Google Scholar 

  26. Kac, M.: On the average number of real roots of a random algebraic equation. Proc. Lond. Math. Soc. 2(50), 390–408 (1948). https://doi.org/10.1112/plms/s2-50.5.390

    Article  MathSciNet  MATH  Google Scholar 

  27. Kostlan, E.: On the distribution of roots of random polynomials. In: From Topology to Computation: Proceedings of the Smalefest (Berkeley, CA, 1990), pp. 419–431. Springer, Berlin (1993)

    Chapter  Google Scholar 

  28. Ledoan, A., Merkli, M., Starr, S.: A universality property of Gaussian analytic functions. J. Theor. Probab. 25(2), 496–504 (2012)

    Article  MathSciNet  Google Scholar 

  29. Littlewood, J.E., Offord, A.C.: On the number of real roots of a random algebraic equation. J. Lond. Math. Soc. 13, 288–295 (1938). https://doi.org/10.1112/jlms/s1-13.4.288

    Article  MathSciNet  MATH  Google Scholar 

  30. Littlewood, J.E., Offord, A.C.: On the number of real roots of a random algebraic equation. II. Proc. Camb. Philos. Soc. 35, 133–148 (1939)

    Article  Google Scholar 

  31. Littlewood, J.E., Offord, A.C.: On the number of real roots of a random algebraic equation. III. Mat. Sb. Nov. Ser. 12, 277–286 (1943)

  32. Lubinsky, D.S., Pritsker, I.E., Xie, X.: Expected number of real zeros for random linear combinations of orthogonal polynomials. Proc. Am. Math. Soc. 144(4), 1631–1642 (2016)

    Article  MathSciNet  Google Scholar 

  33. Lubinsky, D.S., Pritsker, I.E., Xie, X.: Expected number of real zeros for random orthogonal polynomials. Math. Proc. Camb. Philos. Soc. 164(1), 47–66 (2018)

    Article  MathSciNet  Google Scholar 

  34. Maslova, N.B.: The distribution of the number of real roots of random polynomials. Teor. Verojatnost. i Primenen. 19, 488–500 (1974a)

    MathSciNet  Google Scholar 

  35. Maslova, N.B.: The variance of the number of real roots of random polynomials. Teor. Verojatnost. i Primenen. 19, 36–51 (1974b)

    MathSciNet  Google Scholar 

  36. Nguyen, H., Nguyen, O., Vu, V.: On the number of real roots of random polynomials. Commun. Contemp. Math. 18(4), 17 (2016). https://doi.org/10.1142/S0219199715500522

    Article  MathSciNet  MATH  Google Scholar 

  37. Petrov, V.V.: Sums of Independent Random Variables. Ergebnisse der Mathematik und ihrer Grenzgebiete. Band 82. Springer, Berlin (1975)

    Chapter  Google Scholar 

  38. Pritsker, I.E., Varga, R.S.: The Szegő curve, zero distribution and weighted approximation. Trans. Am. Math. Soc. 349(10), 4085–4105 (1997)

    Article  Google Scholar 

  39. Schehr, G., Majumdar, S.N.: Real roots of random polynomials and zero crossing properties of diffusion equation. J. Stat. Phys. 132(2), 235–273 (2008). https://doi.org/10.1007/s10955-008-9574-3

    Article  MathSciNet  MATH  Google Scholar 

  40. Shirai, T.: Limit theorems for random analytic functions and their zeros. In: Functions in Number Theory and Their Probabilistic Aspects, RIMS Kôkyûroku Bessatsu, B34, pp. 335–359. Res. Inst. Math. Sci. (RIMS), Kyoto (2012)

  41. Shub, M., Smale, S.: The complexity of Bezout theorem, I–V. In: Cucker, F., Wong, R. (eds.) The Collected Papers of Stephen Smale, vol. 3. Singapore University Press, Singapore (2000)

    MATH  Google Scholar 

  42. Sodin, M., Tsirelson, B.: Random complex zeroes. I. Asymptotic normality. Isr. J. Math. 144, 125–149 (2004)

    Article  MathSciNet  Google Scholar 

  43. Tao, T., Vu, V.: Local universality of zeroes of random polynomials. Int. Math. Res. Not. 2015(13), 5053–5139 (2015). https://doi.org/10.1093/imrn/rnu084

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The support by the SFB 878 “Groups, Geometry and Actions” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakhar Kabluchko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flasche, H., Kabluchko, Z. Real Zeroes of Random Analytic Functions Associated with Geometries of Constant Curvature. J Theor Probab 33, 103–133 (2020). https://doi.org/10.1007/s10959-018-0843-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-018-0843-z

Keywords

Mathematics Subject Classification (2010)

Navigation