Skip to main content
Log in

The Random \((n-k)\)-Cycle to Transpositions Walk on the Symmetric Group

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We study the rate of convergence of the Markov chain on \(S_n\) which starts with a random \((n-k)\)-cycle for a fixed \(k \ge 1\), followed by random transpositions. The convergence to the stationary distribution turns out to be of order n. We show that after \(cn + \frac{\ln k}{2}n\) steps for \(c>0\), the law of the Markov chain is close to the uniform distribution. The character of the defining representation is used as test function to obtain a lower bound for the total variation distance. We identify the asymptotic distribution of the test function given the law of the Markov chain for the \((n-1)\)-cycle case. The upper bound relies on estimates for the difference of normalized characters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aigner, M.: A Course in Enumeration. Springer, Berlin (2007)

    MATH  Google Scholar 

  2. Behrends, E.: Introduction to Markov Chains (with Special Emphasis on Rapid Mixing). Vieweg Verlag, Braunschweig/Wiesbaden (2000)

    Book  MATH  Google Scholar 

  3. Berestycki, N., Schramm, O., Zeitouni, O.: Mixing times for random k-cycles and coalescence-fragmentation chains. Ann. Probab. 39(5), 1815–1843 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernstein, M.: Likelihood orders for the \(p\)-cycle walks on the symmetric group. Electron. J. Comb. 25(1), 1–25 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Billingsley, P.: Probability and Measure, 2nd edn, p. 406. Wiley, New York (1986)

    MATH  Google Scholar 

  6. Bormashenko, O.: A coupling argument for the random transposition walk. arXiv preprint arXiv:1109.3915 (2011)

  7. Diaconis, P.: Group Representations in Probability and Statistics. Institute of Mathematical Sciences, Lecture Notes-Monograph Series 11, Hayward, CA (1988)

  8. Diaconis, P., Greene, C.: Applications of Murphy’s elements. Stanford University Technical Reports No. 335, pp. 1–22 (1989)

  9. Diaconis, P., Shahshahani, M.: Generating a random permutation with random transpositions. Z. Wahrsch. Verw. Gebiete 57(2), 159–179 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ding, S.: A Random Walk in Representations. Ph.D. dissertation, University of Pennslyvania (2014)

  11. Goupil, A., Chauve, C.: Combinatorial operators for Kronecker powers of representations of \(S_n\). Sémin. Lothar. Comb. 54, B54j (2006)

    MATH  MathSciNet  Google Scholar 

  12. James, G.D.: The Representation Theory of the Symmetric Groups, p. 8. Springer, Berlin (1978)

    Book  Google Scholar 

  13. Kuba, M., Panholzer, A.: On moment sequences and mixed poisson distribution. Probab. Surv. 13, 89–155 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Time. AMS, Providence (2009)

    MATH  Google Scholar 

  15. Lulov, N., Pak, I.: Rapidly mixing random walks and bounds on characters of the symmetric group. J. Algebra. Comb. 16(2), 151–163 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford University Press, New York (1979)

    MATH  Google Scholar 

  17. Sagan, B.: The Symmetric Group. Brooks/Cole Publishing Co., Belmont (1991)

    MATH  Google Scholar 

  18. Saloff-Coste, L.: Random walks on finite groups. In: Probability on Discrete Structures, Encyclopaedia Math. Sci. 110, 263–346 (2004)

  19. Takács, L.: The problem of coincidences. Arch. Hist. Exact Sci. 21(3), 229–244 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wilf, H.S.: Generatingfunctionology. Academic, New York (1990)

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Jason Fulman for suggesting the problem and his most valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alperen Y. Özdemir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özdemir, A.Y. The Random \((n-k)\)-Cycle to Transpositions Walk on the Symmetric Group. J Theor Probab 32, 1438–1460 (2019). https://doi.org/10.1007/s10959-018-0826-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-018-0826-0

Keywords

Mathematics Subject Classification (2010)

Navigation