Skip to main content
Log in

Moments of the Hermitian Matrix Jacobi Process

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

In this paper, we compute the expectation of traces of powers of the Hermitian matrix Jacobi process for a large enough but fixed size. To proceed, we first derive the semi-group density of its eigenvalues process as a bilinear series of symmetric Jacobi polynomials. Next, we use the expansion of power sums in the Schur polynomial basis and the integral Cauchy–Binet formula in order to determine the partitions having nonzero contributions after integration. It turns out that these are hooks of bounded weight and the sought expectation results from the integral of a product of two Schur functions with respect to a generalized beta distribution. For special values of the parameters on which the matrix Jacobi process depends, the last integral reduces to the Cauchy determinant and we close the paper with the investigation of the asymptotic behavior of the resulting formula as the matrix size tends to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. With respect to Lebesgue measure \(\text {d}\lambda = \prod _{i=1}^m\text {d}\lambda _i\).

  2. This is referred to as Pieri formula.

References

  1. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  2. Beerends, R.J., Opdam, E.M.: Certain hypergeometric series related to the root system \(BC\). Trans. Am. Math. Soc. 339(2), 581–607 (1993)

    MathSciNet  MATH  Google Scholar 

  3. Berezin, F.A., Karpelevic, F.I.: Zonal spherical functions and Laplace operators on some symmetric spaces. Dokl. Akad. Nauk SSSR (N.S.) 118, 9–12 (1958)

    MathSciNet  MATH  Google Scholar 

  4. Biane, P.: Free Brownian Motion, Free Stochastic Calculus and Random Matrices. Fields. Inst. Commun., 12, Amer. Math. Soc. Providence, RI, 1–19 (1997)

  5. Capitaine, M., Casalis, M.: Asymptotic freeness by generalized moments for Gaussian and Wishart matrices. Appl. Beta Random Matrices. Indiana Univ. Math. J. 53(2), 397–431 (2004)

    Article  MATH  Google Scholar 

  6. Carré, C., Deneufchatel, M., Luque, J.G., Vivo, P.: Asymptotics of Selberg-like integrals: the unitary case and Newton’s interpolation formula. J. Math. Phys. 51(12), 19 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Collins, B.: Product of random projections, Jacobi ensembles and universality problems arising from free probability. Probab. Theory Relat. Fields 133(3), 315–344 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dahlqvist, A., Collins, B., Kemp, T.: The hard edge of unitary Brownian motion. Probab. Theory Relat. Fields (2017)

  9. Débiard, A.: Système Différentiel Hypergéométrique et Parties Radiales des Opérateurs Invariants des Espaces Symétriques de Type \(BC_p\). Lecture Notes in Math., vol. 1296. Springer, Berlin (1987)

    MATH  Google Scholar 

  10. Deift, P., Gioev, D.: Random Matrix Theory: Invariant Ensembles and Universality. Courant Lecture Notes in Mathematics, vol. 18. Courant Institute of Mathematical Sciences, New York (2009)

    MATH  Google Scholar 

  11. Demni, N.: Free Jacobi process. J. Theory Probab. 21(1), 118–143 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Demni, N.: \(\beta \)-Jacobi processes. Adv. Pure Appl. Math. 1(3), 325–344 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Demni, N.: Inverse of the flow and moments of the free Jacobi process associated with one projection. Available on ArXiv

  14. Demni, N., Hamdi, T., Hmidi, T.: Spectral distribution of the free Jacobi process. Indiana Univ. J. 61(3) (2012)

  15. Demni, N., Hmidi, T.: Spectral distribution of the free Jacobi process associated with one projection. Colloq. Math. 137(2), 271–296 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Doumerc, Y.: Matrices aléatoires, processus stochastiques et groupes de réflexions. Ph.D. thesis, Paul Sabatier Univ. Available at http://perso.math.univ-toulouse.fr/ledoux/doctoral-students/

  17. Hoogenboom, B.: Spherical functions and invariant differential operators on complex Grassmann manifolds. Ark. Mat. 20(1), 69–85 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Katori, M., Tanemura, H.: Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems. J. Math. Phys. 45(8), 3058–3085 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lascoux, A.: Square-ice enumeration. Sém. Lothar. Combin. 42, Art. B42p, 15 pp (1999)

  20. Lassalle, M.: Une formule du binôme généralisée pour les polynômes de Jack. C. R. Acad. Sci. Paris Sér. I Math. 310, 253–256 (1990)

    MathSciNet  MATH  Google Scholar 

  21. Lassalle, M.: Coefficients du binôme généralisés. C. R. Acad. Sci. Paris. Sér. I Math. 310, 257–260 (1990)

    MathSciNet  MATH  Google Scholar 

  22. Lassalle, M.: Polynômes de Jacobi. C. R. Acad. Sci. Paris. t. 312, Série I. pp. 425–428 (1991)

  23. Lévy, T.: Schur–Weyl duality and the heat kernel measure on the unitary group. Adv. Math. 218(2), 537–575 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liao, M.: Lévy Processes in Lie Groups. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  25. MacDonald, I.G.: Symmetric Functions and Hall Polynomials. Second edition, Mathematical Monographs, Oxford (1995)

  26. Olshanski, G., Okounkov, A.: Limits of \(BC\)-type orthogonal polynomials as the number of variables goes too infinity. Jack, Hall-Littlewood and Macdonald polynomials, 281–318, Contemp. Math. 417, Amer. Math. Soc., Providence, RI (2006)

  27. Olshanski, G.I., Osinenko, A.A.: Multivariate Jacobi polynomial and the Selberg integral. Funct. Anal. Appl. 46(4), 262–278 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rains, E.M.: Combinatorial properties of Brownian motion on the compact classical groups. J. Theor. Probab. 10(3), 659–679 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Deleaval.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deleaval, L., Demni, N. Moments of the Hermitian Matrix Jacobi Process. J Theor Probab 31, 1759–1778 (2018). https://doi.org/10.1007/s10959-017-0761-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-017-0761-5

Keywords

Mathematics Subject Classification (2010)

Navigation