Skip to main content
Log in

Typical Behavior of the Harmonic Measure in Critical Galton–Watson Trees with Infinite Variance Offspring Distribution

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We study the typical behavior of the harmonic measure in large critical Galton–Watson trees whose offspring distribution is in the domain of attraction of a stable distribution with index \(\alpha \in (1,2]\). Let \(\mu _n\) denote the hitting distribution of height n by simple random walk on the critical Galton–Watson tree conditioned on non-extinction at generation n. We extend the results of Lin (Typical behavior of the harmonic measure in critical Galton–Watson trees, arXiv:1502.05584, 2015) to prove that, with high probability, the mass of the harmonic measure \(\mu _n\) carried by a random vertex uniformly chosen from height n is approximately equal to \(n^{-\lambda _\alpha }\), where the constant \(\lambda _\alpha >\frac{1}{\alpha -1}\) depends only on the index \(\alpha \). In the analogous continuous model, this constant \(\lambda _\alpha \) turns out to be the typical local dimension of the continuous harmonic measure. Using an explicit formula for \(\lambda _\alpha \), we are able to show that \(\lambda _\alpha \) decreases with respect to \(\alpha \in (1,2]\), and it goes to infinity at the same speed as \((\alpha -1)^{-2}\) when \(\alpha \) approaches 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Artin, E.: Einführung in die Theorie der Gammafunktion. Teubner, Leipzig (1931); English translation: The Gamma Function. Holt, Rinehart and Winston (1964)

  2. Athreya, K.B., Ney, P.E.: Branching Processes. Springer, New York (1972)

    Book  MATH  Google Scholar 

  3. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular variation. In: Encyclopedia of Mathematics and its Applications, vol. 27. Cambridge University Press, xx+491 (1987)

  4. Chauvin, B., Rouault, A., Wakolbinger, A.: Growing conditioned trees. Stoch. Process. Appl. 39, 117–130 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Curien, N., Le Gall, J.-F.: The harmonic measure of balls in random trees. Ann. Probab. 45, 147–209 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Duquesne, T., Le Gall, J.-F.: Random Trees, Lévy Processes and Spatial Branching Processes, Astérisque 281, vi+147 (2002)

  7. Duquesne, T., Le Gall, J.-F.: Probabilistic and fractal aspects of Lévy trees. Probab. Theory Relat. Fields 131, 553–603 (2005)

    Article  MATH  Google Scholar 

  8. Feller, W.: An Introduction to Probability Theory and its Applications, vol. II, 2nd edn. Wiley, New York (1971)

    MATH  Google Scholar 

  9. Lamperti, J.: An occupation time theorem for a class of stochastic processes. Trans. Am. Math. Soc. 88, 380–387 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lin, S.: The harmonic measure of balls in critical Galton–Watson trees with infinite variance offspring distribution. Electron. J. Probab. 19(98), 1–35 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Lin, S.: Typical behavior of the harmonic measure in critical Galton–Watson trees. To appear in Annales de l’Institut Henri Poincaré, Probabilités et Statistiques. arXiv:1502.05584 (2015)

  12. Lyons, R., Pemantle, R., Peres, Y.: Ergodic theory on Galton–Watson trees: speed of random walk and dimension of harmonic measure. Ergod. Theory Dyn. Syst. 15, 593–619 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lyons, R., Pemantle, R., Peres, Y.: Conceptual proofs of \(l\log l\) criteria for mean behavior of branching processes. Ann. Probab. 23, 1125–1138 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge University Press, To appear (2016). http://mypage.iu.edu/~rdlyons/

  15. Peres, Y., Zeitouni, O.: A central limit theorem for biased random walks on Galton–Watson trees. Probab. Theory Relat. Fields 140, 595–629 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Slack, R.S.: A branching process with mean one and possibly infinite variance. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9, 139–145 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vatutin, V.A.: Limit theorems for critical Markov branching processes with several types of particles and infinite second moments. Mat. Sb. 103(145), 253–264 (1977)

    MathSciNet  MATH  Google Scholar 

  18. Yakymiv, A.L.: Reduced branching processes. Theory Probab. Appl. 25, 584–588 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to an anonymous referee for many comments that greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen Lin.

Additional information

Shen Lin: Supported in part by the Grant ANR-14-CE25-0014 (ANR GRAAL).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, S. Typical Behavior of the Harmonic Measure in Critical Galton–Watson Trees with Infinite Variance Offspring Distribution. J Theor Probab 31, 1469–1511 (2018). https://doi.org/10.1007/s10959-017-0752-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-017-0752-6

Keywords

Mathematics Subject Classification (2010)

Navigation