Skip to main content
Log in

A Central Limit Theorem for Stochastic Heat Equations in Random Environment

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

In this article, we investigate the asymptotic behavior of the solution to a one-dimensional stochastic heat equation with random nonlinear term generated by a stationary, ergodic random field. We extend the well-known central limit theorem for finite-dimensional diffusions in random environment to this infinite-dimensional setting. Due to our result, a central limit theorem in \(L^1\) sense with respect to the randomness of the environment holds under a diffusive time scaling. The limit distribution is a centered Gaussian law whose covariance operator is explicitly described. The distribution concentrates only on the space of constant functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biskup, M.: Recent progress on the random conductance model. Probab. Surv. 8, 294–373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bogachev, V.I.: Gaussian Measures, Mathematical Surveys and Monographs, vol. 62. American Mathematical Society, Providence (2011)

    Google Scholar 

  3. Da Prato, G., Tubaro, L.: Some results about dissipativity of Kolmogorov operators. Czechoslov. Math. J. 126, 685–699 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ethier, S.N., Kurtz, T.G.: Markov Process: Characterization and Convergence. Wiley, Hoboken (2005)

    MATH  Google Scholar 

  5. Funaki, T.: Random motion of strings and related stochastic evolution equations. Nagoya Math. J. 89, 129–193 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Funaki, T.: Regularity properties for stochastic partial differential equations of parabolic type. Osaka J. Math. 28, 495–516 (1991)

    MathSciNet  MATH  Google Scholar 

  7. Hairer, M., Shen, H.: The dynamical sine-Gordon model. Commun. Math. Phys. 341(3), 933–989 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kipnis, C., Varadhan, S.R.S.: Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun. Math. Phys. 104(1), 1–19 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Komorowski, T., Landim, C., Olla, S.: Fluctuations in Markov Processes, Grundlehren der Mathematischen Wissenschaften, vol. 345. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  10. Kozlov, S.M.: The averaging of random operators. Mat. Sb. 109, 188–202 (1979)

    MathSciNet  Google Scholar 

  11. Nualart, D.: The Malliavin Calculus and Related Topics, Probability and its Applications. Springer, New York (1995)

    Book  MATH  Google Scholar 

  12. Oelschläger, K.: Homogenization of a diffusion process in a divergence-free random field. Ann. Probab. 16(3), 1084–1126 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Osada, H.: Homogenization of diffusion processes with random stationary coefficients. In: Probability Theory and Mathematical Statistics, Tbilissi, 1982. Lect. Notes Math, vol. 1021, pp. 507–517 (1983)

  14. Osada, H.: An invariance principle for Markov processes and Brownian particles with singular interaction. Ann. Inst. Henri. Poincaré Probab. Stat. 34(2), 217–248 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Osada, H., Saitoh, T.: An invariance principle for non-symmetric Markov processes and reflecting diffusions in random domains. Probab. Theory Relat. Fields 101(1), 45–63 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Papanicolaou, G., Varadhan, S.R.S.: Boundary value problems with rapidly oscillating random coefficients, random fields, vols I, II, Esztergom, 1979. Colloq Math. Soc. János Bolyai 27, 835–873 (1981)

    Google Scholar 

  17. Papanicolaou, G., Varadhan, S.R.S.: Diffusions with random coefficients. In: Kallianpur G., Krishnaiah P.R., Ghosh J.K. (eds.) Statistics and Probability: Essays in Honor of C.R. Rao. North-Holland Pub. Co. pp. 547–552 (1982)

  18. Peszat, S., Zabczyk, J.: Strong Feller property and irreducibility for diffusions on Hilbert spaces. Ann. Probab. 23(1), 157–172 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Varadhan, S.R.S.: Self-diffusion of a tagged particle in equilibrium for asymmetric mean zero random walk with simple exclusion. Ann. Inst. Henri Poincaré Probab. Stat. 31(1), 273–285 (1995)

    MathSciNet  MATH  Google Scholar 

  20. Xu, L.: An invariance principle for stochastic heat equations with periodic coefficients, available at arXiv:1505.03391 (2015)

  21. Yosida, K.: Functional Analysis, Classics in Mathematics. Springer, Berlin (1980)

    Google Scholar 

Download references

Acknowledgements

The author greatly thanks Professor Tadahisa Funaki and Professor Stefano Olla for their instructive discussion and suggestions. The author also thanks Professor Jean-Dominique Deuschel for his comments on quenched results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L. A Central Limit Theorem for Stochastic Heat Equations in Random Environment. J Theor Probab 31, 1356–1379 (2018). https://doi.org/10.1007/s10959-017-0748-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-017-0748-2

Keywords

Mathematics Subject Classification (2010)

Navigation