Skip to main content
Log in

A first-order limit law for functionals of two independent fractional Brownian motions in the critical case

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We prove a first-order limit law for functionals of two independent \(d\)-dimensional fractional Brownian motions with the same Hurst index \(H=2/d\,(d\ge 4)\), using the method of moments and extending a result by LeGall in the case of Brownian motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biane, P.: Comportement asymptotique de certaines fonctionnelles additives de plusieurs mouvements browniens. In: Séminaire de Probabilités, XXIII, Lecture Notes in Mathematics, vol. 1372, pp. 198–233. Springer, Berlin (1989)

  2. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  3. LeGall, J.F.: Propriétés d’intersection des marches aléatoires II. Etude des cas critiques. Commun. Math. Phys. 104, 509–528 (1986)

    Article  MathSciNet  Google Scholar 

  4. Hu, Y., Nualart, D., Xu, F.: Central limit theorem for an additive functional of the fractional Brownian motion. Ann. Probab. 42(1), 168–203 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Nualart, D., Xu, F.: Central limit theorem for an additive functional of the fractional Brownian motion II. Electron. Commun. Probab. 18(74), 1–10 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Nualart, D., Xu, F.: Central limit theorem for functionals of two independent fractional Brownian motions. Stoch. Proc. Appl. 124(11), 3782–3806 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kono, N.: Kallianpur-Robbins law for fractional Brownian motion. In: Watanabe, S., Fukushima, M., Prohorov, Yu.V., Shiryaev, A.N. (eds.) Probability Theory and Mathematical Statistics (Tokyo, 1995), pp. 229–236. World Scienticfic Publisher, River Edge (1996)

  8. Nualart, D., Ortiz-Latorre, S.: Intersection local time for two independent fractional Brownian motions. J. Theor. Probab. 20, 759–767 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wu, D., Xiao, Y.: Regularity of intersection local times of fractional Brownian motions. J. Theor. Probab. 23, 972–1001 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Xu, F. : Second order limit laws for occupation times of the fractional Brownian motion. arXiv:1310.3649

Download references

Acknowledgments

We would like to thank two anonymous referees and an associate editor for carefully reading this manuscript and making helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangjun Xu.

Additional information

J. Bi is supported by National Natural Science Foundation of China (Grant No. 11301188) and Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130076120008).

F. Xu is supported by National Natural Science Foundation of China (Grant No. 11401215), Shanghai Pujiang Program (14PJ1403300) and 111 Project (B14019).

Appendix

Appendix

In this section, we prove a lemma which is important in the Proof of Theorem 1.1.

Recall that \(\fancyscript{P}_m\) is the set of all permutations of \(\{1,2,\ldots ,m\}\). For any \((\tau , \sigma )\in \fancyscript{P}_m\times \fancyscript{P}_m\), define

$$\begin{aligned} \phi _{\tau ,\sigma }(i)=\sup \left\{ \tau (j): j\in A^{\sigma }_i\right\} , \end{aligned}$$

where

$$\begin{aligned} A^{\sigma }_i=\big \{\sigma (i), \ldots , \sigma (m)\big \}\Delta \big \{\sigma (i)+1, \ldots , \sigma (m)+1\big \}. \end{aligned}$$

Let \(\Omega _m\) be the set of all \((\tau , \sigma )\in \fancyscript{P}_m\times \fancyscript{P}_m\) such that \(\phi _{\tau ,\sigma }\) is bijective. By Lemma 4 in [1], the number of elements in \(\Omega _m\) is

$$\begin{aligned} \#\Omega _m=\prod ^{m}_{i=1}(2i-1)=(2m-1)!!. \end{aligned}$$

Recall the definition of \(R^{n}_{m}(a_1,a_2,b_1,b_2)\) in (3.15). The following lemma shows that

$$\begin{aligned} \lim \limits _{n\rightarrow \infty } R^{n}_{m}(a_1,a_2,b_1,b_2) \end{aligned}$$

exists and does not depend on \(a_1\) and \(a_2\).

Lemma 3.4

$$\begin{aligned} \lim _{n\rightarrow \infty } R^{n}_{m}(a_1,a_2,b_1,b_2)=\left( \frac{2\pi ^{\frac{d}{2}}t\, \Gamma ^2\left( \frac{d+4}{4}\right) }{(b_1b_2)^{\frac{d}{4}}\, \Gamma \left( \frac{d+2}{2}\right) }\right) ^m\, (2m-1)!!. \end{aligned}$$
(3.17)

Proof

Recall that \(Hd=2\). Then

$$\begin{aligned} R^{n}_{m}(a_1,a_2,b_1,b_2)&=\frac{m!}{n^m} \sum _{\sigma \in \fancyscript{P}_m}\int _{|y_1|<a_1e^{nHt}}\cdots \int _{|y_m|<a_1e^{nHt}} \int _{[0,a_2]^{2m}} \\&\quad \times \exp \bigg (-b_1\sum \limits ^m_{i=1} |y_i|^2 u_i^{2H}-b_2\sum \limits ^m_{i=1}\sup _{j\in A^{\sigma }_i} |y_j|^2 v_i^{2H}\bigg ) \hbox {d}u\, \hbox {d}v\, \hbox {d}y. \end{aligned}$$

It is easy to see that

$$\begin{aligned}&\limsup _{n\rightarrow \infty } R^{n}_{m}(a_1,a_2,b_1,b_2)\\&\quad =\limsup _{n\rightarrow \infty }\frac{m!}{n^m} \sum _{\sigma \in \fancyscript{P}_m}\int _{1<|y_1|<a_1e^{nHt}}\cdots \int _{1<|y_m|<a_1e^{nHt}} \int _{[0,a_2]^{2m}} \\&\qquad \times \exp \bigg (-b_1\sum \limits ^m_{i=1} |y_i|^2 u_i^{2H}-b_2\sum \limits ^m_{i=1}\sup _{j\in A^{\sigma }_i} |y_j|^2 v_i^{2H}\bigg ) \hbox {d}u\, \hbox {d}v\, \hbox {d}y\\&\quad \le \limsup _{n\rightarrow \infty }\frac{m!}{n^m} \int _{[0,+\infty )^{2m}} \exp \bigg (-b_1\sum \limits ^m_{i=1} u_i^{2H}-b_2\sum \limits ^m_{i=1}v_i^{2H}\bigg ) \hbox {d}u\, \hbox {d}v\\&\qquad \times \sum _{\sigma \in \mathcal {P}_m}\int _{1<|y_1|<a_1e^{nHt}}\cdots \int _{1<|y_m|<a_1e^{nHt}} \Big (\prod ^{m}_{i=1} |y_i|^{-\frac{d}{2}}\Big )\Big (\prod ^{m}_{i=1} (\sup _{j\in A^{\sigma }_i} |y_j|)^{-\frac{d}{2}}\Big )\, \hbox {d}y. \end{aligned}$$

Making the change of variables \(r_i=|y_i|\) for \(i=1,2,\ldots ,m\),

$$\begin{aligned}&\limsup _{n\rightarrow \infty } R^{n}_{m}(a_1,a_2,b_1,b_2)\\&\quad \le \bigg (\frac{\Gamma \left( \frac{d+4}{4}\right) }{b_1^{\frac{d}{4}}}\bigg )^m\bigg (\frac{\Gamma \left( \frac{d+4}{4}\right) }{b_2^{\frac{d}{4}}}\bigg )^m \bigg (\frac{d\pi ^{\frac{d}{2}}}{\Gamma \left( \frac{d+2}{2}\right) }\bigg )^m\\&\qquad \times \limsup _{n\rightarrow \infty }\frac{m!}{n^m} \sum _{\sigma \in \fancyscript{P}_m}\int _{(1,a_1e^{nHt})^m} \Big (\prod ^{m}_{i=1} r_i^{-\frac{d}{2}}\Big )\Big (\prod ^{m}_{i=1} \big (\sup _{j\in A^{\sigma }_i} r_j\big )^{-\frac{d}{2}}\Big )\, \hbox {d}r. \end{aligned}$$

Making another change of variables \(r_i=e^{n\alpha _i}\) for \(i=1,2,\ldots ,m\), the right-hand side of the above inequality is equal to

$$\begin{aligned}&\Bigg (\frac{d\pi ^{\frac{d}{2}}\, \Gamma ^2\left( \frac{d+4}{4}\right) }{(b_1b_2)^{\frac{d}{4}}\Gamma \left( \frac{d+2}{2}\right) }\Bigg )^m \limsup _{n\rightarrow \infty } m!\sum _{\sigma \in \fancyscript{P}_m}\int _{(0,\frac{\ln a_1}{n}+Ht)^m}\\&\quad \exp \bigg (\frac{d}{2}n\Big (\sum ^{m}_{i=1} \alpha _i-\sum ^{m}_{i=1}\sup _{j\in A^{\sigma }_i} \alpha _j \Big )\bigg )\, \hbox {d}\alpha \\&\quad =\left( \frac{d\pi ^{\frac{d}{2}}\, \Gamma ^2\left( \frac{d+4}{4}\right) }{(b_1b_2)^{\frac{d}{4}}\Gamma \left( \frac{d+2}{2}\right) }\right) ^m (Ht)^m\, \#\Omega _m, \end{aligned}$$

where in the last equality we used the dominated convergence theorem and the definition of the set \(\Omega _m\).

Therefore,

$$\begin{aligned} \limsup _{n\rightarrow \infty } R^{n}_{m}(a_1,a_2,b_1,b_2)\le \Bigg (\frac{2\pi ^{\frac{d}{2}}t\, \Gamma ^2\left( \frac{d+4}{4}\right) }{(b_1b_2)^{\frac{d}{4}}\, \Gamma \left( \frac{d+2}{2}\right) }\Bigg )^m\, (2m-1)!!. \end{aligned}$$
(3.18)

On the other hand,

$$\begin{aligned}&\liminf _{n\rightarrow \infty } R^{n}_{m}(a_1,a_2,b_1,b_2)\\&\quad =\liminf _{n\rightarrow \infty }\frac{m!}{n^m} \sum _{\sigma \in \fancyscript{P}_m}\int _{K^{H}<|y_1|<a_1e^{nHt}}\cdots \int _{K^H<|y_m|<a_1e^{nHt}} \int _{[0,a_2]^{2m}} \\&\qquad \times \exp \bigg (-b_1\sum \limits ^m_{i=1} |y_i|^2 u_i^{2H}-b_2\sum \limits ^m_{i=1}\sup _{j\in A^{\sigma }_i} |y_j|^2 v_i^{2H}\bigg ) \hbox {d}u\, \hbox {d}v\, \hbox {d}y\\&\quad \ge \liminf _{n\rightarrow \infty }\frac{m!}{n^m} \int _{[0,Ka_2]^{2m}} \exp \bigg (-b_1\sum \limits ^m_{i=1} u_i^{2H}-b_2\sum \limits ^m_{i=1}v_i^{2H}\bigg ) \hbox {d}u\, \hbox {d}v\\&\qquad \times \sum _{\sigma \in \mathcal {P}_m}\int _{K^H<|y_1|<a_1e^{nHt}}\cdots \int _{K^H<|y_m|<a_1e^{nHt}} \bigg (\prod ^{m}_{i=1} |y_i|^{-\frac{d}{2}}\bigg )\bigg (\prod ^{m}_{i=1} (\sup _{j\in A^{\sigma }_i} |y_j|)^{-\frac{d}{2}}\bigg )\, \hbox {d}y\\&\quad \ge \int _{[0,Ka_2]^{2m}} \exp \bigg (-b_1\sum \limits ^m_{i=1} u_i^{2H}-b_2\sum \limits ^m_{i=1}v_i^{2H}\bigg ) \hbox {d}u\, \hbox {d}v\, \bigg (\frac{d\pi ^{\frac{d}{2}}}{\Gamma (\frac{d+2}{2})}\bigg )^m\\&\qquad \times \liminf _{n\rightarrow \infty }\frac{m!}{n^m} \sum _{\sigma \in \fancyscript{P}_m}\int _{(K^H,a_1e^{nHt})^m} \Big (\prod ^{m}_{i=1} r_i^{-\frac{d}{2}}\Big )\Big (\prod ^{m}_{i=1} (\sup _{j\in A^{\sigma }_i} r_j)^{-\frac{d}{2}}\Big )\, dr\\&\quad =\int _{[0,Ka_2]^{2m}} \exp \bigg (-b_1\sum \limits ^m_{i=1} u_i^{2H}-b_2\sum \limits ^m_{i=1}v_i^{2H}\bigg ) \hbox {d}u\, \hbox {d}v\bigg (\frac{d\pi ^{\frac{d}{2}}}{\Gamma (\frac{d+2}{2})}\bigg )^m\\&\qquad \times \liminf _{n\rightarrow \infty } m!\sum _{\sigma \in \fancyscript{P}_m}\int _{(\frac{H\ln K}{n},\frac{\ln a_1}{n}+Ht)^m} \exp \bigg (\frac{d}{2}n\Big (\sum ^{m}_{i=1} \alpha _i-\sum ^{m}_{i=1}\sup _{j\in A^{\sigma }_i} \alpha _j \Big )\bigg )\, d\alpha \\&\quad =\int _{[0,Ka_2]^{2m}} \exp \bigg (-b_1\sum \limits ^m_{i=1} u_i^{2H}-b_2\sum \limits ^m_{i=1}v_i^{2H}\bigg ) \hbox {d}u\, \hbox {d}v\, \bigg (\frac{2\pi ^{\frac{d}{2}}t}{\Gamma \left( \frac{d+2}{2}\right) }\bigg )^m (2m-1)!!. \end{aligned}$$

Since the positive constant \(K\) can be arbitrarily large,

$$\begin{aligned}&\liminf _{n\rightarrow \infty } R^{n}_{m}(a_1,a_2,b_1,b_2)\nonumber \\&\quad \ge \int _{[0,+\infty )^{2m}} \exp \bigg (-b_1\sum \limits ^m_{i=1} u_i^{2H}-b_2\sum \limits ^m_{i=1}v_i^{2H}\bigg ) \hbox {d}u\, \hbox {d}v\, \bigg (\frac{2\pi ^{\frac{d}{2}}t}{\Gamma \left( \frac{d+2}{2}\right) }\bigg )^m (2m-1)!!\nonumber \\&\quad =\Bigg (\frac{2\pi ^{\frac{d}{2}}t\, \Gamma ^2\left( \frac{d+4}{4}\right) }{(b_1b_2)^{\frac{d}{4}}\, \Gamma \left( \frac{d+2}{2}\right) }\Bigg )^m\, (2m-1)!!, \end{aligned}$$
(3.19)

where the last equality follows from a change of variables, the definition of Gamma function and the fact \(Hd=2\).

Combining (3.18) and (3.19) gives the desired result (3.17).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, J., Xu, F. A first-order limit law for functionals of two independent fractional Brownian motions in the critical case. J Theor Probab 29, 941–957 (2016). https://doi.org/10.1007/s10959-015-0604-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-015-0604-1

Keywords

Mathematics Subject Classification (2010)

Navigation