Journal of Theoretical Probability

, Volume 29, Issue 2, pp 443–458 | Cite as

Functionals of a Lévy Process on Canonical and Generic Probability Spaces



We develop an approach to Malliavin calculus for Lévy processes from the perspective of expressing a random variable \(Y\) by a functional \(F\) mapping from the Skorohod space of càdlàg functions to \(\mathbb {R}\), such that \(Y=F(X)\) where \(X\) denotes the Lévy process. We also present a chain-rule-type application for random variables of the form \(f(\omega ,Y(\omega ))\). An important tool for these results is a technique which allows us to transfer identities proved on the canonical probability space (in the sense of Solé et al.) associated to a Lévy process with triplet \((\gamma ,\sigma ,\nu )\) to an arbitrary probability space \((\varOmega ,\mathcal {F},\mathbb {P})\) which carries a Lévy process with the same triplet.


Lévy processes Malliavin calculus for Lévy processes Canonical Lévy process 

Mathematics Subject Classification

60G51 60G05 


  1. 1.
    Applebaum, D.: Universal Malliavin calculus in Fock and Lévy-Itô spaces. Commun. Stoch. Process. 3, 119–141 (2009)MathSciNetMATHGoogle Scholar
  2. 2.
    Bally, V., Bavouzet, M., Messaoud, M.: Integration by parts formula for locally smooth laws and appications to sensitivity computations. Ann. Appl. Probab. 17(1), 33–66 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bauer, H.: Measure and Integration Theory. de Gruyter, Berlin (2001)CrossRefMATHGoogle Scholar
  4. 4.
    Bichteler, K., Graveraux, J.B., Jacod, J.: Malliavin Calculus for Processes with Jumps, Stochastic Monographs, vol. 2. Gordon and Breach, London (1987)Google Scholar
  5. 5.
    Bismut, J.M.: Calcul des variations stochastique et processus de sauts. Z. Wahrscheinlichkeitstheorie verw. Gebiete 63, 147–235 (1983)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Carlen, E., Pardoux, E.: Differential calculus and integration-by-parts on Poisson space. Math. Appl. 59, 63–67 (1990) (Stoch. Algebra and Analysis in Classical and Quantum Dynamics, Marseille (1988))Google Scholar
  7. 7.
    Cont, R., Fournié, D.: Functional Itô calculus and stochastic integral representation of martingales. Ann. Probab. 41(1), 109–133 (2013)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Decreusefond, L., Savy, N.: Anticipative calculus with respect to filtered Poisson processes. Annales de l’institut Henri Poincaré (B) Probability and Statistics 42(3), 343–372 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Delong, Ł., Imkeller, P.: On Malliavin’s differentiability of BSDEs with time delayed generators driven by Brownian motions and Poisson random measures. Stoch. Process. Appl. 120(9), 1748–1775 (2010)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Denis, L.: A criterion of density for solutions of Poisson-driven SDEs. Probab. Theory Relat. Fields 118, 406–426 (2000)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Delzeith, O.: On Skorohod spaces as universal sample path spaces. arXiv:math/0412092v1 (2004)
  12. 12.
    Di Nunno, G., Øksendal, B., Proske, F.: Malliavin Calculus for Lévy Processes with Applications to Finance, Springer (2009)Google Scholar
  13. 13.
    Dupire, B.: Functional Itô Calculus, Portfolio Research Paper 2009-04, Bloomberg (2009)Google Scholar
  14. 14.
    Elie, R.: Contrôle stochastique et méthodes numériques en finance mathématique, Ph.D. Thesis, University Paris-Dauphine (2006)Google Scholar
  15. 15.
    Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, New York (1986)CrossRefMATHGoogle Scholar
  16. 16.
    Geiss, Ch., Laukkarinen, E.: Density of certain smooth Lévy functionals in \(\mathbb{D}_{1,2}\). Probab. Math. Stat. 31(Fasc. 1), 1–15 (2011)MathSciNetMATHGoogle Scholar
  17. 17.
    Ishikawa, Y., Kunita, H.: Malliavin calculus on the Wiener–Poisson space and its applications to canonical SDE with jumps. Stoch. Proc. Appl. 116, 1743–1769 (2006)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Itô, K.: Spectral type of the shift transformation of differential process with stationary increments. Trans. Am. Math. Soc. 81, 253–263 (1956)CrossRefMATHGoogle Scholar
  19. 19.
    Kulik, A.: Malliavin calculus for Lévy processes with arbitrary Lévy measures. Theory Probab. Math. Stat. 72, 75–92 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Nualart, D.: The Malliavin Calculus and Related Topics. Second edition, Probability and Its Applications (New York). Springer, Berlin (2006)Google Scholar
  21. 21.
    Nualart, D., Vives, J.: Anticipative Calculus for the Poisson Process Based on the Fock Space, Séminaire de Probabilités XXIV; Lecture notes in Mathematics, vol. 1426. Springer, Berlin (1990)Google Scholar
  22. 22.
    Picard, J.: On the existence of smooth density for jump processes. P.T.R.F. 105, 481–511 (1996)MATHGoogle Scholar
  23. 23.
    Shiryaev, A.N.: Probability, 2nd edn. Springer, Berlin (1995)MATHGoogle Scholar
  24. 24.
    Shortt, R.M.: The extension of measurable functions. Proc. Am. Math. Soc. 87(3), 444–446 (1983)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Solé, J., Utzet, F., Vives, J.: Canonical Lévy process and Malliavin calculus. Stoch. Process. Appl. 117, 165–187 (2007)CrossRefMATHGoogle Scholar
  26. 26.
    Solé, J., Utzet, F., Vives, J.: Chaos expansions and Malliavin calculus for Lévy processes. In: Stochastic Analysis and Applications, Abel Symp., 2, pp. 595–612. Springer, Berlin (2007)Google Scholar
  27. 27.
    Yong, J., Zhou, X.Y.: Stochastic Controls, Applications of Mathematics, vol. 43. Springer, New York (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of InnsbruckInnsbruckAustria

Personalised recommendations