Journal of Theoretical Probability

, Volume 29, Issue 1, pp 48–62 | Cite as

The Kearns–Saul Inequality for Bernoulli and Poisson-Binomial Distributions

  • Eckhard Schlemm


We give a direct rigorous proof of the Kearns–Saul inequality, which bounds the Laplace transform of a generalised Bernoulli random variable. We extend the arguments to generalised Poisson-binomial distributions and characterise the set of parameters such that an analogous inequality holds for the sum of two generalised Bernoulli random variables.


Bernoulli distribution Kearns–Saul inequality Laplace transform Poisson-binomial distribution 

Mathematics Subject Classification (2010)



  1. 1.
    Berend, D., Kontorovich, A.: On the concentration of the missing mass. Electron. Commun. Probab. 18(3), 1–7 (2013)MathSciNetGoogle Scholar
  2. 2.
    Chen, S.X., Liu, J.S.: Statistical applications of the Poisson-binomial and conditional Bernoulli distributions. Stat. Sin. 7(4), 875–892 (1997)MATHGoogle Scholar
  3. 3.
    Kearns, M., Saul, L.: Large deviation methods for approximate probabilistic inference. In: Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence, pp. 311–319. Morgan Kaufmann Publishers Inc., Los Altos (1998)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Wolfson CollegeUniversity of CambridgeCambridgeUK

Personalised recommendations