Journal of Theoretical Probability

, Volume 28, Issue 4, pp 1447–1467 | Cite as

Asymptotic Behavior of Critical Infection Rates for Threshold-One Contact Processes on Lattices and Regular Trees



In this paper, we are concerned with threshold-one contact processes on lattices and regular trees. We show that the critical infection rate for the process to survive is approximately inversely proportional to the degree of the graph. To prove this main result, a crucial lemma about the chance for a simple random walk to return to \(0\) is introduced.


Contact process Threshold-one Critical value Asymptotic behavior 

Mathematics Subject Classification (2010)

60K35 82C22 



This work is supported by the National Basic Research Program of China (2011CB808000), National Natural Science Foundation of China (No. 11001004), and China Scholarship Council (No. 201206010097)


  1. 1.
    Andjel, E.D., Liggett, T.M., Mountford, T.: Clustering in one-dimensional threshold voter models. Stoch. Process. Appl. 42, 73–90 (1992)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Cox, J.T., Durrett, R.: Nonlinear voter models. In: Rick Durrett, Harry Kesten (eds.) Random Walks, Brownian Motion and Interacting Particle Systems. A Festschrift in Honor of Frank Spiter, pp. 189–201. Birkhäuser, Boston (1991)Google Scholar
  3. 3.
    Fontes, L.R., Schonmann, R.H.: Threshold \(\theta \ge 2\) contact processes on homogeneous trees. Probab. Theory Relat. Fields 141, 513–541 (2008)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Griffeath, D.: The binary contact path process. Ann. Probab. 11, 692–705 (1983)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Handjani, S.: The complete convergence theorem for coexistent threshold voter models. Ann. Probab. 27, 226–245 (1999)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Lawler, G.F., Limic, V.: Random Walk: A Modern Introduction. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  7. 7.
    Liggett, T.M.: Interacting Particle Systems. Springer, New York (1985)MATHCrossRefGoogle Scholar
  8. 8.
    Liggett, T.M.: Coexistence in threshold voter models. Ann. Probab. 22, 764–802 (1994)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, New York (1999)MATHCrossRefGoogle Scholar
  10. 10.
    Mountford, T., Schonmann, R.H.: The survival of large dimensional threshold contact processes. Ann. Probab. 37, 1483–1501 (2009)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Pemantle, R.: The contact process on trees. Ann. Probab. 20, 2089–2116 (1992)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Spitzer, F.: Principles of Random Walk. Springer, Berlin (1976)MATHCrossRefGoogle Scholar
  13. 13.
    van der Hofstad, R.: Random graphs and complex networks. Lecture notes (2012).
  14. 14.
    Xue, X.F.: Critical density points for threshold voter models on homogeneous trees. J. Stat. Phys. 146, 423–433 (2012)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Mathematical SciencesPeking UniversityBeijingChina

Personalised recommendations