Journal of Theoretical Probability

, Volume 23, Issue 3, pp 671–714 | Cite as

A Stochastic Taylor-Like Expansion in the Rough Path Theory

  • Yuzuru Inahama


In this paper, we establish a Taylor-like expansion in the context of rough path theory for a family of Itô maps indexed by a small parameter. We treat not only the case that the roughness p satisfies [p]=2, but also the case that [p]≥3. As an application, we discuss the Laplace asymptotics for Itô functionals of Brownian rough paths.


Rough path Itô map Taylor expansion Laplace asymptotics 

Mathematics Subject Classification (2000)

60H14 60F99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aida, S.: Notes on proofs of continuity theorem in rough path analysis. Preprint (2006) Google Scholar
  2. 2.
    Aida, S.: Semi-classical limit of the bottom of spectrum of a Schrödinger operator on a path space over a compact Riemannian manifold. J. Funct. Anal. 251(1), 59–121 (2007) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Azencott, R.: Formule de Talyor stochastique et développement asymptotique d’intégrales de Feynman. In: Seminar on Probability, XVI, Supplement, Lecture Notes in Math., vol. 921, pp. 237–285. Springer, Berlin (1982) Google Scholar
  4. 4.
    Baudoin, F., Coutin, L.: Operators associated with a stochastic differential equation driven by fractional Brownian motions. Stoch. Process. Appl. 117(5), 550–574 (2007) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ben Arous, G.: Methods de Laplace et de la phase stationnaire sur l’espace de Wiener. Stochastics 25(3), 125–153 (1988) MATHMathSciNetGoogle Scholar
  6. 6.
    Coutin, L., Qian, Z.: Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Relat. Fields 122(1), 108–140 (2002) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Coutin, L., Friz, P., Victoir, N.: Good approximations to rough paths and applications. Ann. Probab. 35(3), 1172–1193 (2007) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Diestel, J., Uhl, J.J. Jr: Vector Measures, Mathematical Surveys, vol. 15. American Mathematical Society, Providence (1977) MATHGoogle Scholar
  9. 9.
    Friz, P., Victoir, N.: Euler estimates for rough differential equations. J. Differ. Equ. 244(2), 388–412 (2008) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Friz, P., Victoir, N.: Differential equations driven by Gaussian signals. Ann. Inst. Henri Poincaré (B) Probab. Stat. (2009, to appear) Google Scholar
  11. 11.
    Inahama, Y.: Laplace’s method for the laws of heat processes on loop spaces. J. Funct. Anal. 232, 148–194 (2006) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Inahama, Y.: Laplace approximation for rough differential equation driven by fractional Brownian motion (2009, submitted) Google Scholar
  13. 13.
    Inahama, Y., Kawabi, H.: Large deviations for heat kernel measures on loop spaces via rough paths. J. Lond. Math. Soc. 73(3), 797–816 (2006) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Inahama, Y., Kawabi, H.: Asymptotic expansions for the Laplace approximations for Itô functionals of Brownian rough paths. J. Funct. Anal. 243(1), 270–322 (2007) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kusuoka, S., Stroock, D.W.: Precise asymptotics of certain Wiener functionals. J. Funct. Anal. 99(1), 1–74 (1991) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kusuoka, S., Stroock, D.W.: Asymptotics of certain Wiener functionals with degenerate extrema. Commun. Pure Appl. Math. 47(4), 477–501 (1994) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Ledoux, M., Lyons, T., Qian, Z.: Lévy area of Wiener processes in Banach spaces. Ann. Probab. 30(2), 546–578 (2002) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Ledoux, M., Qian, Z., Zhang, T.S.: Large deviations and support theorem for diffusion processes via rough paths. Stoch. Process. Appl. 102(2), 265–283 (2002) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Lyons, T., Qian, Z.: System Control and Rough Paths. Oxford University Press, Oxford (2002) MATHCrossRefGoogle Scholar
  20. 20.
    Millet, A., Sanz-Solé, M.: Large deviations for rough paths of the fractional Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 42(2), 245–271 (2006) MATHCrossRefGoogle Scholar
  21. 21.
    Piterbarg, V.I., Fatalov, V.R.: The Laplace method for probability measures in Banach spaces. Russ. Math. Surv. 50(6), 1151–1239 (1995) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Takanobu, S., Watanabe, S.: Asymptotic expansion formulas of the Schilder type for a class of conditional Wiener functional integrations. In: Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotics, Sanda/Kyoto, 1990, Pitman Res. Notes Math. Ser., vol. 284, pp. 194–241. Longman, Harlow (1993) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Graduate School of MathematicsNagoya UniversityNagoyaJapan

Personalised recommendations