Journal of Theoretical Probability

, Volume 24, Issue 2, pp 479–516 | Cite as

Spectral Norm of Circulant-Type Matrices



We first discuss the convergence in probability and in distribution of the spectral norm of scaled Toeplitz, circulant, reverse circulant, symmetric circulant, and a class of k-circulant matrices when the input sequence is independent and identically distributed with finite moments of suitable order and the dimension of the matrix tends to ∞.

When the input sequence is a stationary two-sided moving average process of infinite order, it is difficult to derive the limiting distribution of the spectral norm, but if the eigenvalues are scaled by the spectral density, then the limits of the maximum of modulus of these scaled eigenvalues can be derived in most of the cases.


Large-dimensional random matrix Eigenvalues Toeplitz matrix Hankel matrix Circulant matrix Symmetric circulant matrix Reverse circulant matrix k-circulant matrix Spectral norm Moving average process Spectral density Normal approximation 

Mathematics Subject Classification (2000)

15A52 60F99 60F05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamczak, R.: A few remarks on the operator norm of random Toeplitz matrices. 0803.3111. J. Theor. Probab. (to appear)
  2. 2.
    Bose, A., Mitra, J.: Limiting spectral distribution of a special circulant. Stat. Probab. Lett. 60(1), 111–120 (2002) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bose, A., Sen, A.: Spectral norm of random large dimensional noncentral Toeplitz and Hankel matrices. Electron. Commun. Probab. 12, 29–35 (2007) MathSciNetGoogle Scholar
  4. 4.
    Bose, A., Sen, A.: Another look at the moment method for large dimensional random matrices. Electron. J. Probab. 13(21), 588–628 (2008) MATHMathSciNetGoogle Scholar
  5. 5.
    Bose, A., Hazra, R.S., Saha, K.: Limiting spectral distribution of circulant type matrices with dependent inputs. Technical Report No. R6/2009, April 09, 2009, Stat–Math Unit, Indian Statistical Institute, Kolkata. Submitted for publication Google Scholar
  6. 6.
    Bose, A., Mitra, J., Sen, A.: Large dimensional random k-circulants. Technical Report No. R10/2008, December 29, 2008, Stat–Math Unit, Indian Statistical Institute, Kolkata. Submitted for publication Google Scholar
  7. 7.
    Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting, 2nd edn. Springer Texts in Statistics. Springer, New York (2002) CrossRefMATHGoogle Scholar
  8. 8.
    Bryc, W., Sethuraman, S.: A remark on maximum eigenvalue for circulant matrices. IMS volume High Dimensional Probability Luminy conference proceedings (2009, to appear) Google Scholar
  9. 9.
    Bryc, W., Dembo, A., Jiang, T.: Spectral measure of large random Hankel, Markov and Toeplitz matrices. Ann. Probab. 34(1), 1–38 (2006) CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Dai, M., Mukherjea, A.: Identification of the parameters of a multivariate normal vector by the distribution of the maximum. J. Theor. Probab. 14(1), 267–298 (2001) CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Davis, P.J.: Circulant Matrices. A Wiley-Interscience Publication, Pure and Applied Mathematics. Wiley, New York (1979) MATHGoogle Scholar
  12. 12.
    Davis, R.A., Mikosch, T.: The maximum of the periodogram of a non-Gaussian sequence. Ann. Probab. 27(1), 522–536 (1999) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Einmahl, U.: Extensions of results of Komlós, Major, and Tusnády to the multivariate case. J. Multivar. Anal. 28, 20–68 (1989) CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Grenander, U., Szegő, G.: Toeplitz Forms and their Applications. Chelsea, New York (1984) MATHGoogle Scholar
  15. 15.
    Hammond, C., Miller, S.J.: Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices. J. Theor. Probab. 18(3), 537–566 (2005) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Lin, Z., Liu, W.: On maxima of periodograms of stationary processes. Ann. Stat. 37(5B), 2676–2695 (2009) CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Meckes, M.W.: On the spectral norm of a random Toeplitz matrix. Electron. Commun. Probab. 12, 315–325 (2007) MATHMathSciNetGoogle Scholar
  18. 18.
    Meckes, M.W.: Some results on random circulant matrices. arXiv:0902.2472v1
  19. 19.
    Pollock, D.S.G.: Circulant matrices and time-series analysis. Int. J. Math. Ed. Sci. Tech. 33(2), 213–230 (2002) CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Resnick, S.I.: Extreme Values, Regular Variation, and Point Processes. Applied Probability. A Series of the Applied Probability Trust. Springer, New York (1987) MATHGoogle Scholar
  21. 21.
    Silverstein, J.W.: The spectral radii and norms of large-dimensional non-central random matrices. Commun. Stat. Stoch. Models 10(3), 525–532 (1994) CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Walker, A.M.: Some asymptotic results for the periodogram of a stationary time series. J. Aust. Math. Soc. 5, 107–128 (1965) CrossRefMATHGoogle Scholar
  23. 23.
    Zhou, J.T.: A formal solution for the eigenvalues of g circulant matrices. Math. Appl. (Wuhan) 9(1), 53–57 (1996) MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Statistics and Mathematics UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations