Skip to main content
Log in

Spectral Norm of Circulant-Type Matrices

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We first discuss the convergence in probability and in distribution of the spectral norm of scaled Toeplitz, circulant, reverse circulant, symmetric circulant, and a class of k-circulant matrices when the input sequence is independent and identically distributed with finite moments of suitable order and the dimension of the matrix tends to ∞.

When the input sequence is a stationary two-sided moving average process of infinite order, it is difficult to derive the limiting distribution of the spectral norm, but if the eigenvalues are scaled by the spectral density, then the limits of the maximum of modulus of these scaled eigenvalues can be derived in most of the cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamczak, R.: A few remarks on the operator norm of random Toeplitz matrices. 0803.3111. J. Theor. Probab. (to appear)

  2. Bose, A., Mitra, J.: Limiting spectral distribution of a special circulant. Stat. Probab. Lett. 60(1), 111–120 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bose, A., Sen, A.: Spectral norm of random large dimensional noncentral Toeplitz and Hankel matrices. Electron. Commun. Probab. 12, 29–35 (2007)

    MathSciNet  Google Scholar 

  4. Bose, A., Sen, A.: Another look at the moment method for large dimensional random matrices. Electron. J. Probab. 13(21), 588–628 (2008)

    MATH  MathSciNet  Google Scholar 

  5. Bose, A., Hazra, R.S., Saha, K.: Limiting spectral distribution of circulant type matrices with dependent inputs. Technical Report No. R6/2009, April 09, 2009, Stat–Math Unit, Indian Statistical Institute, Kolkata. Submitted for publication

  6. Bose, A., Mitra, J., Sen, A.: Large dimensional random k-circulants. Technical Report No. R10/2008, December 29, 2008, Stat–Math Unit, Indian Statistical Institute, Kolkata. Submitted for publication

  7. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting, 2nd edn. Springer Texts in Statistics. Springer, New York (2002)

    Book  MATH  Google Scholar 

  8. Bryc, W., Sethuraman, S.: A remark on maximum eigenvalue for circulant matrices. IMS volume High Dimensional Probability Luminy conference proceedings (2009, to appear)

  9. Bryc, W., Dembo, A., Jiang, T.: Spectral measure of large random Hankel, Markov and Toeplitz matrices. Ann. Probab. 34(1), 1–38 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dai, M., Mukherjea, A.: Identification of the parameters of a multivariate normal vector by the distribution of the maximum. J. Theor. Probab. 14(1), 267–298 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Davis, P.J.: Circulant Matrices. A Wiley-Interscience Publication, Pure and Applied Mathematics. Wiley, New York (1979)

    MATH  Google Scholar 

  12. Davis, R.A., Mikosch, T.: The maximum of the periodogram of a non-Gaussian sequence. Ann. Probab. 27(1), 522–536 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Einmahl, U.: Extensions of results of Komlós, Major, and Tusnády to the multivariate case. J. Multivar. Anal. 28, 20–68 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Grenander, U., Szegő, G.: Toeplitz Forms and their Applications. Chelsea, New York (1984)

    MATH  Google Scholar 

  15. Hammond, C., Miller, S.J.: Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices. J. Theor. Probab. 18(3), 537–566 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lin, Z., Liu, W.: On maxima of periodograms of stationary processes. Ann. Stat. 37(5B), 2676–2695 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Meckes, M.W.: On the spectral norm of a random Toeplitz matrix. Electron. Commun. Probab. 12, 315–325 (2007)

    MATH  MathSciNet  Google Scholar 

  18. Meckes, M.W.: Some results on random circulant matrices. arXiv:0902.2472v1

  19. Pollock, D.S.G.: Circulant matrices and time-series analysis. Int. J. Math. Ed. Sci. Tech. 33(2), 213–230 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Resnick, S.I.: Extreme Values, Regular Variation, and Point Processes. Applied Probability. A Series of the Applied Probability Trust. Springer, New York (1987)

    MATH  Google Scholar 

  21. Silverstein, J.W.: The spectral radii and norms of large-dimensional non-central random matrices. Commun. Stat. Stoch. Models 10(3), 525–532 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Walker, A.M.: Some asymptotic results for the periodogram of a stationary time series. J. Aust. Math. Soc. 5, 107–128 (1965)

    Article  MATH  Google Scholar 

  23. Zhou, J.T.: A formal solution for the eigenvalues of g circulant matrices. Math. Appl. (Wuhan) 9(1), 53–57 (1996)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajat Subhra Hazra.

Additional information

A. Bose’s research supported by J.C. Bose Fellowship, Dept. of Science and Technology, Govt. of India.

K. Saha’s research supported by CSIR Fellowship, Govt. of India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bose, A., Hazra, R.S. & Saha, K. Spectral Norm of Circulant-Type Matrices. J Theor Probab 24, 479–516 (2011). https://doi.org/10.1007/s10959-009-0257-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-009-0257-z

Keywords

Mathematics Subject Classification (2000)

Navigation