Journal of Theoretical Probability

, Volume 23, Issue 3, pp 904–919 | Cite as

On Asymptotic Expansion in the Random Allocation of Particles by Sets

  • Saidbek S. Mirakhmedov
  • Sherzod M. Mirakhmedov


We consider a scheme of equiprobable allocation of particles into cells by sets. An Edgeworth-type asymptotic expansion in the local central limit theorem for the number of empty cells left after allocation of all sets of particles is derived.


Asymptotic expansion Allocation scheme Empty cells Bernoulli distribution 

Mathematics Subject Classification (2000)

62G20 60F05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartlett, M.S.: The characteristic function of a conditional statistics. J. Lond. Math. 13, 62–67 (1938) MATHCrossRefGoogle Scholar
  2. 2.
    Bhattacharya, R.N., Ranga Rao, R.: Normal Approximation and Asymptotic Expansions. Wiley, New York (1976) MATHGoogle Scholar
  3. 3.
    Feller, W.: An Introduction to Probability Theory and Its Applications, 3rd edn. Wiley, New York (1968) MATHGoogle Scholar
  4. 4.
    Frobenius, G.: Über die Bernoullischen Zahlen und die Eulerschen Polynome. Sitzenberichte der Preussischen Akademie der Wissenschaften, pp. 829–830 (1910) Google Scholar
  5. 5.
    Gani, J.: Random allocation methods in an epidemic model. In: Cambanis, S., Ghosh, J.K., Karandikar, R.L., Sen, P.K. (eds.) Stochastic Processes: A Festachrift in Honour of Gopinath Kallianpur, pp. 97–106. Springer, New York (1993) Google Scholar
  6. 6.
    Gani, J.: Random allocation and urn models. J. Appl. Probab. 41A, 313–320 (2004) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ivanov, V.A., Ivchenko, G.I., Medvedev, Yu.I.: Discrete problems of the probability theory (a survey). J. Sov. Math. 31(2), 2759–2795 (1985) MATHCrossRefGoogle Scholar
  8. 8.
    Harper, L.: Stirling behavior is asymptotically normal. Ann. Math. Stat. 38, 410–414 (1967) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Holst, L.: A unified approach to limit theorems for urn models. J. Appl. Probab. 16(1), 154–162 (1979) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Jonson, N.L., Kotz, S.: Urn Models and Their Applications. Wiley, New York (1977) Google Scholar
  11. 11.
    Kolchin, V.F., Sevastyanov, B.A., Chistyakov, V.P.: Random Allocation. Wiley, New York (1978) Google Scholar
  12. 12.
    Kotz, S., Balakrishnan, N.: Advances in urn models during the past two decades. In: Advances in Combinatorial Methods and Appl. to Probabl. and Statist., pp. 203–257. Birkhäuser, Basel (1997) Google Scholar
  13. 13.
    Mikhailov, V.G.: Asymptotic normality of the number of empty cells for group allocation of particles. Theory Probab. Appl. 25, 82–90 (1978) CrossRefGoogle Scholar
  14. 14.
    Mikhailov, V.G.: Convergence to multi-dimensional normal law in an equiprobable scheme for group allocation of particles. Math. USSR-St 39, 145–168 (1981) CrossRefGoogle Scholar
  15. 15.
    Menezes, A., Van Qorshot, P., Vanstone, S.: Handbook of Applied Cryptology. CRC Press, New York (1997) Google Scholar
  16. 16.
    Mirakhmedov, Sh.A.: The estimations of the closeness to a normal law in the scheme without replacement. Theory Probab. Appl. 30, 427–439 (1985) MATHMathSciNetGoogle Scholar
  17. 17.
    Mirakhmedov, Sh.A.: Asymptotical analysis of the conditional distributions of the sum of independent random variables and applications in the theory of decomposable statistics. Dissertation for Doctor of Sciences degree. Tashkent, Uzbekistan, 290 p. (1994) Google Scholar
  18. 18.
    Mirakhmedov, Sh.A.: Limit theorems for conditional distributions. Discrete Math. Appl. 5, 107–132 (1995) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Mirakhmedov, Sh.A.: Limit theorems on decomposable statistics in a generalized allocation schemes. Discrete Math. Appl. 6, 379–404 (1996) CrossRefMathSciNetGoogle Scholar
  20. 20.
    Mirakhmedov, Sh.M.: Asymptotic normality associated with generalized occupancy problem. Stat. Probab. Lett. 77, 1549–1558 (2007) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Mukhin, A.B.: Local limit theorems for the distribution of a sum of independent random vectors. Theory Probab. Appl. 28, 360–366 (1984) MathSciNetGoogle Scholar
  22. 22.
    Park, C.J.: On the distribution of the number of unobserved elements when m samples of size n are drawn from a finite population. Commun. Stat. A10, 371–383 (1981) CrossRefGoogle Scholar
  23. 23.
    Petrov, V.V.: Limit Theorems of Probability Theory. Oxford University Press, London (1995) MATHGoogle Scholar
  24. 24.
    Vatutin, V.A., Mikhailov, V.G.: Limit theorems for the number of empty cells in an equiprobable scheme for group allocation of particles. Theory Probab. Appl. 27, 734–743 (1982) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Saidbek S. Mirakhmedov
    • 1
  • Sherzod M. Mirakhmedov
    • 2
  1. 1.Institute of Algorithm and EngineeringTashkentUzbekistan
  2. 2.GIK Institute of Engineering Sciences and TechnologyTopiPakistan

Personalised recommendations