Advertisement

Journal of Theoretical Probability

, Volume 19, Issue 3, pp 721–739 | Cite as

Moderate and Small Deviations for the Ranges of One-Dimensional Random Walks

  • Xia Chen
Article

We establish moderate and small deviations for the ranges of integer valued random walks. Our theorems apply to the limsup and the liminf laws of the iterated logarithm.

Keywords

Range intersection of ranges random walks moderate deviation small deviation law of the iterated logarithm 

AMS 2000 Subject Classifications

60D05 60F10 60F15 60G50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bass R. F., and Chen X. (2004). Self-intersection local time: critical exponent and laws of the iterated logarithm. Ann. Probab. 32, 3221-3247CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Bass R. F., Chen X. and Rosen J. (2005). Large deviations for renormalized self-intersection local times of stable processes. Ann. Probab. 33, 984-1013CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Bass, R. F., Chen, X., and Rosen, J. (2006). Moderate deviations for the range and self-intersections of planar random walks Memoirs of AMS (to appear).Google Scholar
  4. 4.
    Bass R. F., and Kumagai T. (2002). Laws of the iterated logarithm for the range of random walks in two and three dimensions. Ann. Probab. 30, 1369-1396CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Chen X. (2004). Exponential asymptotics and law of the iterated logarithm for intersection local times of random walks. Ann. Probab. 32, 3248-3300CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Chen X. (2005). Moderate deviations and law of the iterated logarithm for intersections of the ranges of random walks. Ann. Probab. 33, 1014-1059CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Chen X., and Li W. (2004). Large and moderate deviations for intersection local times. Probab Theor. Rel. Fields 128, 213-254CrossRefMATHGoogle Scholar
  8. 8.
    Chen X., Li W., and Rosen J. (2005). Large deviations for local times of stable processes and stable random walks in 1 dimension. Electron. J. Probab. 10, 577-608MathSciNetGoogle Scholar
  9. 9.
    Chen X., and Rosen J. (2005). Exponential asymptotics for intersection local times of stable processes and random walks. Ann. l’Inst. H. Poincare 41, 908-928MathSciNetGoogle Scholar
  10. 10.
    de Acosta A. (1980). Exponential moments of vector valued random series and triangular arrays. Ann. Probab. 8, 381-389MathSciNetMATHGoogle Scholar
  11. 11.
    de Acosta A. (1983). Small deviations in the functional central limit theorem with application to functional laws of the iterated logarithm. Ann. Probab. 11, 78-101MathSciNetMATHGoogle Scholar
  12. 12.
    Dembo A., and Zeitouni O. (1998). Large Deviations Techniques and Applications, 2nd ed. Springer, New YorkMATHGoogle Scholar
  13. 13.
    Dvoretzky, A., Erdös, P., and Kakutani, S. (1950). Double points of paths of Brownian motions in n-space. Leopoldo, Fejér et Frederico Riesz LXX annos natis dedicatus, Paris B, Acta Sci. Math. Szeged 12, 75–81.Google Scholar
  14. 14.
    Dvoretzky A., Erdöos P., and Kakutani S. (1954). Multiple points of paths of Brownian motion in the plane. Bull. Res. Council Israel 3, 364-371MathSciNetGoogle Scholar
  15. 15.
    Feller W. (1951). The asymptotic distribution of the range of sums of independent random variables. Ann. Math. Stat. 22, 427-432MathSciNetMATHGoogle Scholar
  16. 16.
    Hamana Y. (1998). An almost sure invariance principle for the range of random walks. Stochastic Process. Appl. 78, 131-143CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Jain N. C., and Pruitt W. E. (1971). The range of transient random walks. J. Anal. Math. 24, 369-393MathSciNetMATHGoogle Scholar
  18. 18.
    Jain N. C. and Pruitt W. E. (1972). The law of the iterated logarithm for the range of random walk. Ann. Math. Statist. 43, 1692-1697MathSciNetMATHGoogle Scholar
  19. 19.
    Jain N.C., and Pruitt W.E. (1974). Further limit theorems for the range of random walk. J. Anal. Math. 27, 94-117MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Klenke A. and Mörters P. (2005).The multifractal spectrum of Brownian intersection local times. Ann. Probab. 33, 1255-1301CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Le Gall J.-F. (1986a). Propriétés d’intersection des marches aléatoires. I. Convergence vers le temps local d’intersection. Comm. Math. Phys. 104, 471-507CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Le Gall J.-F. (1986b). Propriétés d’intersection des marches aléatoires. II. étude des cas critiques. Comm. Math. Phys. 104, 509-528CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Le Gall J.-F. and Rosen J. (1991). The range of stable random walks. Ann. Probab. 19, 650-705MathSciNetMATHGoogle Scholar
  24. 24.
    Marcus M. B., and Rosen J. (1997) Laws of the iterated logarithm for intersections of random walks on Z 4. Ann. Inst. H. Poincaré Probab. Statist. 33, 37-63CrossRefMathSciNetMATHGoogle Scholar
  25. 25.
    Rosen J. (1997). Laws of the iterated logarithm for triple intersections of three-dimensional random walks. Electron. J. Probab. 2, 1-32Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TennesseeKnoxvilleUSA

Personalised recommendations