Skip to main content
Log in

Pathwise Convergence of a Rescaled Super-Brownian Catalyst Reactant Process

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Consider the one-dimensional catalytic super-Brownian motion X (called the reactant) in the catalytic medium \(\varrho\) which is an autonomous classical super-Brownian motion. We characterize \((\varrho ,X)\) both in terms of a martingale problem and (in dimension one) as solution of a certain stochastic partial differential equation. The focus of this paper is for dimension one the analysis of the longtime behavior via a mass-time-space rescaling. When scaling time by a factor of K, space is scaled by K η and mass by K −η. We show that for every parameter value η ≥ 0 the rescaled processes converge as K→ ∞ in path space. While the catalyst’s limiting process exhibits a phase transition at η = 1, the reactant’s limit is always the same degenerate process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barlow M.T., Evans S.N., Perkins E.A. (1991). Collision local times and measure-valued processes. Can. J. Math. 43(5): 897–938

    MathSciNet  Google Scholar 

  2. Dawson, D. A. (1993). Measure-valued Markov processes. In Hennequin, P. L. (ed.), École d’été de probabilités de Saint Flour XXI–1991, Lecture Notes in Mathematics, Vol. 1541, Springer-Verlag, Berlin, pp. 1–260.

  3. Dawson D.A., Fleischmann K. (1988). Strong clumping of critical space-time branching models in subcritical dimensions. Stoch. Proc. Appl. 30, 193–208

    Article  MathSciNet  Google Scholar 

  4. Dawson D.A., Fleischmann K. (1997). A continuous super-Brownian motion in a super-Brownian medium. J. Theor. Probab. 10(1): 213–276

    Article  MathSciNet  Google Scholar 

  5. Dawson, D. A., and Fleischmann, K. (2000). Catalytic and mutually catalytic branching. In Infinite Dimensional Stochastic Analysis, Royal Netherlands Academy of Arts and Sciences, Amsterdam, pp. 145–170.

  6. Dawson, D. A., and Fleischmann, K. (2002). Catalytic and mutually catalytic super-Brownian motions. In Ascona 1999 Conference, volume 52 of Progress in Probability, Birkhäuser Verlag, pp. 89–110.

  7. Dawson D.A., Fleischmann K., Mueller C. (2000). Finite time extinction of superprocesses with catalysts. Ann. Probab. 28(2): 603–642

    Article  MathSciNet  Google Scholar 

  8. Etheridge, A. (2000). An Introduction to Superprocesses, University lecture series, Vol. 20, Am. Math. Soc., Providence, RI.

  9. Ethier S.N., Kurtz T.G. (1986). Markov Processes: Characterization and Convergence. Wiley, New York

    MATH  Google Scholar 

  10. Fleischmann K., Klenke A. (1999). Smooth density field of catalytic super-Brownian motion. Ann. Appl. Probab. 9(2): 298–318

    Article  MathSciNet  Google Scholar 

  11. Greven, A., Klenke, A., and Wakolbinger, A. (1999). The longtime behavior of branching random walk in a random medium. Electron. J. Probab. 4:no. 12, 80 pages (electronic).

  12. Iscoe I. (1988). On the supports of measure-valued critical branching Brownian motion. Ann. Probab. 16, 200–221

    MathSciNet  Google Scholar 

  13. Klenke, A. (2000). A review on spatial catalytic branching. In Gorostiza, L. G., and Gail Ivanoff B. (eds.), Stochastic Models of CMS Conference Proceedings, Vol. 26, Am. Math. Soc., Providence, RI, pp. 245–263.

  14. Konno N., Shiga T. (1988). Stochastic partial differential equations for some measure-valued diffusions. Probab. Theor. Relat. Fields 79, 201–225

    Article  MathSciNet  Google Scholar 

  15. Le Gall, J. -F. (1999). Spatial Branching Processes, Random Snakes and Partial Differential Equations, Lectures in Mathematics, ETH Zürich, Birkhäuser.

  16. Mitoma I. (1985). An ∞–dimensional inhomogeneous Langevin equation. J. Funct. Anal. 61, 342–359

    Article  MathSciNet  Google Scholar 

  17. Mytnik L. (1998). Weak uniqueness for the heat equation with noise. Ann. Probab. 26(3): 968–984

    Article  MathSciNet  Google Scholar 

  18. Perkins, E. A. (2002). Dawson-Watanabe Superprocesses and Measure-valued Diffusions. In Bernard, P. (ed.), École d’été de probabilités de Saint Flour XXIX–1999, Volume 1781 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, pp. 125–334.

  19. Reimers M. (1989). One dimensional stochastic partial differential equations and the branching measure diffusion. Probab. Theor. Relat. Fields 81, 319–340

    Article  MathSciNet  Google Scholar 

  20. Revuz D., Yor M. (1991). Continuous Martingales and Brownian Motion. Springer-Verlag, Berlin Heidelberg New York

    MATH  Google Scholar 

  21. Walsh, J. B. (1986). An Introduction to Stochastic Partial Differential Equations, Lecture Notes Math., École d’Été de Probabilités de Saint-Flour Vol. 1180 XIV – 1984, Springer-Verlag, Berlin, pp. 266–439.

  22. Wang H. (1998). A class of measure-valued branching diffusions in a random medium. Stoch. Anal. Appl. 6, 753–786

    Google Scholar 

  23. Yosida K. (1974). Functional Analysis, 4th ed. Springer-Verlag, Berlin

    MATH  Google Scholar 

  24. Zähle H. (2005). Space-time reguarity of catalytic super-Brownian motion. Math. Nachr. 278 (7–8): 942–970

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Klenke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleischmann, K., Klenke, A. & Xiong, J. Pathwise Convergence of a Rescaled Super-Brownian Catalyst Reactant Process. J Theor Probab 19, 557–588 (2006). https://doi.org/10.1007/s10959-006-0025-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-006-0025-2

Keywords

Mathematics Subject classification 1991

Navigation