Skip to main content
Log in

Infinite Divisibility for Stochastic Processes and Time Change

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

General results concerning infinite divisibility, selfdecomposability, and the class L m property as properties of stochastic processes are presented. A new concept called temporal selfdecomposability of stochastic processes is introduced. Lévy processes, additive processes, selfsimilar processes, and stationary processes of Ornstein–Uhlenbeck type are studied in relation to these concepts. Further, time change of stochastic processes is studied, where chronometers (stochastic processes that serve to change time) and base processes (processes to be time-changed) are independent but do not, in general, have independent increments. Conditions for inheritance of infinite divisibility and selfdecomposability under time change are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akita K., Maejima M. (2002). On certain self-decomposable self-similar processes with independent increments. Statist. Probab. Letters 59, 53–59

    Article  MathSciNet  MATH  Google Scholar 

  2. Barndorff-Nielsen O.E., Blæsild P., Schmiegel J. (2004). A parsimonious and universal description of turbulent velocity increments. Eur. Phys. J. B 41, 345–363

    Article  Google Scholar 

  3. Barndorff-Nielsen O.E.., Nicolato E., Shephard N. (2002). Some recent developments in stochastic volatility modelling. Quantitative Finance 2, 11–23

    Article  MathSciNet  Google Scholar 

  4. Barndorff-Nielsen O.E.., Pedersen J., Sato K. (2001). Multivariate subordination, selfdecomposability and stability. Adv. Appl. Probab. 33, 160–187

    Article  MathSciNet  MATH  Google Scholar 

  5. Barndorff-Nielsen O.E.., Shephard N. (2001). Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics (with Discussion). J. R. Statist. Soc. B 63, 167–241

    Article  MathSciNet  MATH  Google Scholar 

  6. Barndorff-Nielsen O.E.., Shephard N. (2006). Impact of jumps on returns and realised variances: econometric analysis of time-deformed L évy processes. J. Econometrics 131, 217–252

    Article  MathSciNet  Google Scholar 

  7. Barndorff-Nielsen O. E., and Shephard N. (2006). Continuous Time Approach to Financial Volatility. Cambridge University Press. (To appear.)

  8. Barndorff-Nielsen O.E., and Shiryaev A.N. (2007). Change of Time and Change of Measure. (In preparation.)

  9. Bertoin J. (1996). Lévy Processes. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  10. Bertoin J. (1997). Subordinators: examples and Applications. In Bernard P. (ed.), Lectures on Probability Theory and Statistics. Ecole d’Eté de Probabilities de Saint-Flour XXVII–1997, pp. 1–91

  11. Bochner S. (1949). Diffusion equation and stochastic processes. P. Nat. Acad. Sci. 85, 369–370

    Google Scholar 

  12. Bochner S. (1955). Harmonic Analysis and the Theory of Probability. University of California Press, Berkeley and Los Angeles

    MATH  Google Scholar 

  13. Carr P., Geman H., Madan D.B., Yor M. (2002). The fine structure of asset returns: an empirical investigation. J. Business 75, 305–332

    Article  Google Scholar 

  14. Carr P., Geman H., Madan D.B., Yor M. (2003). Stochastic volatility for Lévy processes. Math. Finance 13, 345–382

    Article  MathSciNet  MATH  Google Scholar 

  15. Chung K.L., Zambrini J.-C. (2003). Introduction to Random Time and Quantum Randomness. World Scientific Publishing, Singapore

    MATH  Google Scholar 

  16. Cont R., Tankov P. (2003). Financial Modelling with Jump Processes. Chapman and Hall/CRC Press, London

    Google Scholar 

  17. Eberlein E. (2001). Application of generalized hyperbolic Lévy motions to finance. In: Barndorff-Nielsen O.E., Mikosch T., Resnick S. (eds), Lévy Processes: Theory and Applications. Birkhäuser Verlag, Basel, pp. 319–337

    Google Scholar 

  18. Eberlein E., Prause K. (2002). The generalized hyperbolic model: financial derivatives and risk measures. In: Geman H., Madan D., Pliska S., Vorst T. (eds), Mathematical Finance–Bachelier Congress 2000. Springer Verlag, Berlin, pp. 245–267

    Google Scholar 

  19. Embrechts P., Maejima M. (2002). Selfsimilar Processes. Princeton Univ Press, Princeton

    MATH  Google Scholar 

  20. Geman H., Madan D.B., Yor M. (2001). Time changes for Lévy processes. Math. Finance 11, 79–96

    Article  MathSciNet  MATH  Google Scholar 

  21. Geman H., Madan D.B., Yor M. (2002). Stochastic volatility, jumps and hidden time changes. Finance and Stochastics 6, 63–90

    Article  MathSciNet  MATH  Google Scholar 

  22. Itô K., McKean H.P., Jr. (1965). Diffusion Processes and Their Sample Paths. Springer, Berlin

    MATH  Google Scholar 

  23. Jeanblanc M., Pitman J., Yor M. (2002). Self-similar processes with independent increments associated with Lévy and Bessel processes. Stoch. Proc. Appl. 100, 223–231

    Article  MathSciNet  MATH  Google Scholar 

  24. Kasahara Y., Maejima M., Vervaat W. (1988). Log-fractional stable processes. Stoch. Proc. Appl. 30, 329–339

    Article  MathSciNet  MATH  Google Scholar 

  25. Maejima M., Sato K. (2003). Semi-Lévy processes, semi-selfsimilar additive processes, and semi-stationary Ornstein–Uhlenbeck type processes. J. Math. Kyoto Univ. 43, 609–639

    MathSciNet  MATH  Google Scholar 

  26. Maejima M., Sato K., Watanabe T. (2000). Distributions of selfsimilar and semi-selfsimilar processes with independent increments. Statist. Probab. Letters 47, 395–401

    Article  MathSciNet  MATH  Google Scholar 

  27. Maejima M., Suzuki K., Tamura Y. (1999). Some multivariate infinitely divisible distributions and their projections. Probab. Theory Math. Statist. 19, 421–428

    MathSciNet  MATH  Google Scholar 

  28. Maruyama G. (1970). Infinitely divisible processes. Theory Probab. Appl. 15, 1–22

    Article  MathSciNet  Google Scholar 

  29. Pedersen J., Sato K. (2003). Cone-parameter convolution semigroups and their subordination. Tokyo J. Math. 26, 503–525

    Article  MathSciNet  MATH  Google Scholar 

  30. Rocha-Arteaga A., and Sato K. (2003) Topics in Infinitely Divisible Distributions and Lévy Processes. Aportaciones Matemáticas, Investigación 17, Sociedad Matemática Mexicana.

  31. Samorodnitsky G., Taqqu M.S. (1994). Stable Non-Gaussian Random Processes. Chapman & Hall, New York

    MATH  Google Scholar 

  32. Sato K. (1991). Self-similar processes with independent increments. Probab. Th. Rel. Fields 89, 285–300

    Article  MATH  Google Scholar 

  33. Sato K. (1998). Multivariate distributions with selfdecomposable projections. J. Korean Math. Soc. 35, 783–791

    MathSciNet  MATH  Google Scholar 

  34. Sato K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ Press, Cambridge

    MATH  Google Scholar 

  35. Sato K. (2004). Stochastic integrals in additive processes and application to semi-Lévy processes. Osaka J. Math. 41, 211–236

    MathSciNet  MATH  Google Scholar 

  36. Skorohod A.V. (1991). Random Processes with Independent Increments. Kluwer Academic Pub., Dordrecht, Netherlands

    MATH  Google Scholar 

  37. Winkel M. (2001). The recovery problem for time-changed Lévy processes. MaPhySto Research Report 2001–37.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-iti Sato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barndorff-Nielsen, O.E., Maejima, M. & Sato, Ki. Infinite Divisibility for Stochastic Processes and Time Change. J Theor Probab 19, 411–446 (2006). https://doi.org/10.1007/s10959-006-0020-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-006-0020-7

Keywords

Navigation