Skip to main content
Log in

The Averaged Robbins – Monro Method for Linear Problems in a Banach Space

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

We consider a recursive method of Robbins–Monro type to solve the linear problem Ax=V in a Banach space. The bounded linear operator A and the vector V are assumed to be observable with some noise only. According to Polyak and Ruppert we use gains converging to zero slower than 1/n and take the average of the iterates as an estimator for the solution of the linear problem. Under weak conditions on the noise processes almost sure and distributional invariance principles are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold L. (1974). Stochastic Differential Equations; Theory and Applications. Wiley, New York

    MATH  Google Scholar 

  2. Billingsley, P. (1999). Convergence of Probability Measures, 2nd ed., Wiley.

  3. Bucy, R. S., and Joseph, P. D. (1968). Filtering for Stochastic Processes with Applications to Guidance. Interscience, New York

    MATH  Google Scholar 

  4. Dippon J., and Renz J. (1997). Weighted means in stochastic approximation. SIAM J. Control Optim. 35:1811–1827

    Article  MathSciNet  MATH  Google Scholar 

  5. Györfi, L. (1980). Stochastic approximation from ergodic sample for linear regression. Z. Wahrscheinlichkeitstheorie verw. Gebiete 54:47–55

    Article  MATH  Google Scholar 

  6. Györfi L., and Walk H. (1996). On the averaged stochastic approximation for linear regression. SIAM J. Control Optim. 34:31–61

    Article  MathSciNet  MATH  Google Scholar 

  7. Karamata J. (1938). Einige Sätze über die Rieszschen Mittel. Bull. Acad. Sci. Math. Nat. A 4:121–137

    Google Scholar 

  8. Kuelbs J. (1973). The invariance principle for Banach space valued random variables. J. Multivariate Anal. 3:161–172

    Article  MathSciNet  MATH  Google Scholar 

  9. Knopp K. (1947). Theorie und Anwendung der unendlichen Reihen, 4th ed. Springer, Berlin

    MATH  Google Scholar 

  10. Ljung L., Pflug G., and Walk H. (1992). Stochastic Approximation and Optimization of Random Systems. Birkhäuser, Basel

    MATH  Google Scholar 

  11. Ljung L. and Söderström T. (1983). Theory and Practice of Recursive Identification. MIT Press, Cambridge

    MATH  Google Scholar 

  12. Pechtl A. (1993). Arithmetic means and invariance principles in stochastic approximation. J. Theor. Probab. 6:153–173

    Article  MathSciNet  MATH  Google Scholar 

  13. Polyak B.T. (1990). New method of stochastic approximation type. Automat. Remote Control 51:937–946

    MathSciNet  MATH  Google Scholar 

  14. Polyak B.T., and Juditsky A.B. (1992). Acceleration of stochastic approximation by averaging. SIAM J. Control Optim. 30:838–855

    Article  MathSciNet  MATH  Google Scholar 

  15. Robbins H., and Monro S. (1951). A stochastic approximation method. Ann. Math. Statist. 22:400–407

    Article  MathSciNet  MATH  Google Scholar 

  16. Ruppert D. (1991). Stochastic approximation. In Gosh, B. K., and Sen, P. K. (eds.), Handbook of Sequential Analysis, Marcel-Dekker, pp. 503–529

  17. Tietz H., and Zeller K. (1997). Tauber-Sätze für bewichtete Mittel. Arch. Math. 68:214–220

    Article  MathSciNet  MATH  Google Scholar 

  18. Tietz H., and Zeller K. (1998). Tauber-Bedingungen für Verfahren mit Abschnittskonvergenz. Acta Math. Hungar. 81:241–247

    Article  MathSciNet  MATH  Google Scholar 

  19. Walk H. (1977). An invariance principle for the Robbins–Monro process in a Hilbert space. Z. Wahrscheinlichkeitsth. verw. Gebiete 39:135–150

    Article  MathSciNet  MATH  Google Scholar 

  20. Walk H. (1980). A functional central limit theorem for martingales in C(K) and its application to sequential estimates. J. Reine Angew. Math. 314:117–135

    MathSciNet  Google Scholar 

  21. Walk H. (1988). Limit behaviour of stochastic approximation processes. Statist. Decisions 6:109–128

    MathSciNet  MATH  Google Scholar 

  22. Walk H., and Zsidó L. (1989). Convergence of the Robbins–Monro method for linear problems in a Banach space. J. Math. Anal. Appl. 139:152–177

    Article  MathSciNet  MATH  Google Scholar 

  23. Yin G.G. (1991). On extensions of Polyak’s averaging approach to stochastic approximation. Stoch. Stoch. Rep. 36:245–264

    MATH  Google Scholar 

  24. Yin G.G., and Zhu Y. (1992). Averaging procedures in adaptive filtering: an efficient approach. IEEE Trans. Automat. Contr. 37:466–475

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Dippon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dippon, J., Walk, H. The Averaged Robbins – Monro Method for Linear Problems in a Banach Space. J Theor Probab 19, 166–189 (2006). https://doi.org/10.1007/s10959-006-0007-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-006-0007-4

Keywords

Navigation