Mathematical Modeling of the Diffusion of Impurities in the Atmosphere for a Local Domain Considering Actual and Forecasting Fields of Meteorological Parameters

Abstract

We present several results on mathematical modeling of the diffusion of impurities in a given local domain. We consider possibilities of applying actual and/or forecasting fields of meteorological parameters for initializing a numerical model. Tests of algorithms and program modules are carried out for the construction of initializing fields of meteorological parameters in the domain considered with application of aerological data, data obtained by the Doppler meteorological radar DMRL-S, and data obtained by the Global Forecast System (GFS). We examine possibilities of applying the 3D visualization of results of numerical experiments as a modern computer method of data analysis in scientific research.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. A. Adzhieva, A. V. Shapovalov, and V. A. Shapovalov, “Analysis of the temporal series of meteorological parameters and their prediction in mesoregions,” Izv. Kabardino-Balkar. Nauch. Tsentr. Ross. Akad. Nauk, No. 1 (45), 32–37 (2012).

  2. 2.

    A. E. Aloyan, Modeling the Dynamics and Kinetics of Gas Impurities and Aerosols in the Atmosphere [in Russian], Nauka, Moscow (2008).

    Google Scholar 

  3. 3.

    V. K. Arguchintsev and A. V. Arguchintseva, Modeling of Mesoscale Hydrothermodynamic Processes and Transport of Anthropogenic Impurities in the Atmosphere and Hydrosphere of the Lake Baikal Region [in Russian], Izd. Irkutsk. Univ., Irkutsk (2007).

    Google Scholar 

  4. 4.

    Atmospheric Turbulence and Modeling of Impurity Diffusion, Gidrometeoizdat, Leningrad (1985).

  5. 5.

    M E. Berlyand, Prediction and Regulation of Air Pollution, Gidrometeoizdat, Leningrad (1985).

    Google Scholar 

  6. 6.

    S. K. Godunov and V. S. Ryaben’kii, Finite-Difference Schemes [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  7. 7.

    L. F. Goldofskaya, Environmental Chemistry [in Russian], Binom, Moscow (2008).

    Google Scholar 

  8. 8.

    T. G. Dmitrienko, Physical and Chemical Processes in the Atmosphere [in Russian], Saratov (2006).

  9. 9.

    A. Kh. Kagermazov, “Validation of the GFS output data with upper-air sounding results,” Izv. Kabardino-Balkar. Nauch. Tsentr. Ross. Akad. Nauk, 59, No. 3, 32–36 (2014).

    Google Scholar 

  10. 10.

    E. Kalnay, M. Kanamitsu, and W. E. Baker, “Global numerical weather prediction at the National Meteorological Center,” Bull. Am. Meteor. Soc., 71, 1410–1428 (1990).

    Article  Google Scholar 

  11. 11.

    I. L. Karol, V. V. Rozanov, and Yu. M. Timofeev, Gaseous Impurities in the Atmosphere [in Russian], Gidrometeoizdat, Leningrad (1983).

    Google Scholar 

  12. 12.

    A. M. Kerimov, E. A. Korchagina, A. V. Shapovalov, and V. A. Shapovalov, “On the diffusion of atmospheric impurities in the mountain-steppe zone,” Izv. Vyssh. Ucheb. Zaved. Sev.-Kav. Region. Estestv. Nauki, No. 3, 86–89 (2007).

  13. 13.

    G. I. Marchuk, Mathematical Modeling in the Problem of Environmental Protection [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  14. 14.

    B. A. Semenchenko and P. N. Belov, Meteorological Aspects of Environmental Protection [in Russian], Izd. Mosk. Univ., Moscow (1984).

    Google Scholar 

  15. 15.

    V. I. Ryazanov, A. V. Shapovalov, and V. A. Shapovalov, “Three-dimensional numerical model of the distribution of impurities in the atmosphere, taking into account local meteorological conditions,” Estestv. Tekhn. Nauki, No. 10 (100), 27–34 (2016).

  16. 16.

    V. A. Shapovalov, “Numerical model of transfer and diffusion of a conservative light impurity for a given field of wind speed,” in: Problems of Informatization of Society and Education [in Russian], Nalchik (2004), pp. 52–54.

  17. 17.

    A. V. Shapovalov and V. A. Shapovalov, “Three-dimensional visualization of geophysical information for solving applied problems,” Nauka. Innov. Tekhnol., No. 1 (5), 65–73 (2014).

  18. 18.

    A. V. Shapovalov, V. A. Shapovalov, and V. I. Ryazanov, “Investigation of the diffusion of combustion products in the near zone of a rocket engine,” Usp. Sovr. Nauki Obraz., 9, No. 4, 201–206 (2017).

    Google Scholar 

  19. 19.

    A. V. Shapovalov, V. A. Shapovalov, V. O. Tapaskhanov, and B. N. Stasenko, “Software for the new Russian Doppler meteorological radar DMRL-S,” in: Proc. All-Russian Conf. on the Physics of Clouds and Active Influences on Hydrometeorological Processes Dedicated to the 80th Anniversary of the Elbrus High-Altitude Integrated Expedition of the Academy of Sciences of the USSR, Nalchik (2014), pp. 131–137.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Adzhieva.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 154, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adzhieva, A.A., Ryazanov, V.I. & Shapovalov, V.A. Mathematical Modeling of the Diffusion of Impurities in the Atmosphere for a Local Domain Considering Actual and Forecasting Fields of Meteorological Parameters. J Math Sci 253, 471–477 (2021). https://doi.org/10.1007/s10958-021-05243-3

Download citation

Keywords and phrases

  • mathematical modeling
  • diffusion of impurities
  • meteorological conditions
  • numerical experiments
  • visualization

AMS Subject Classification

  • 65C20, 86A10