Using the mathematical MAPLE package, we construct models of surfaces of revolution of constant Gaussian curvature and geodesic lines on such surfaces.
This is a preview of subscription content, access via your institution.
References
- 1.
D. V. Alekseevskij, E. B. Vingerg, and A. S. Solodovnikov, “Geometry of spaces of constant curvature,” Encycl. Math. Sci. 29, 1–138 (1993).
- 2.
J. A. Wolf, Spaces of Constant Curvature, Am. Math. Soc., Providence, RI (2011).
- 3.
D. Gromoll, W. Klingenberg, and W. Meyer, Riemannsche Geometrie im Grossen. 2 Aufl. [in German], Lect. Notes Math. 55, Springer, Berlin etc. (1975).
- 4.
S. N. Krivoshapko, V. N. Ivanov, and S. M. Khalabi, Analytic Surfaces [in Russian], Nauka, Moscow (2006).
- 5.
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol. II, John Wiley and Sons, New York etc. (1969).
Author information
Affiliations
Corresponding author
Additional information
Translated from Sibirskii Zhurnal Chistoi i Prikladnoi Matematiki 18, No. 3, 2018, pp. 64-74.
Rights and permissions
About this article
Cite this article
Cheshkova, M.A. Construction of Geodesics on Surfaces of Revolution of Constant Gaussian Curvature. J Math Sci 253, 360–368 (2021). https://doi.org/10.1007/s10958-021-05234-4
Received:
Published:
Issue Date: