Skip to main content
Log in

Generalization of the Tribin Function

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We consider the Tribin function and its generalization based on the \( {Q}_s^{\ast } \) -representation of real numbers, which is an s-symbol encoding of numbers and, generally speaking, a nonself-similar generalization of the s-adic representation. By definition, the function f associates the number \( x={\varDelta}_{\upalpha_1{\upalpha}_2\dots {\upalpha}_n\dots}^{Q_s^{\ast }}, \) where αn ∈ L ≡ As × As × … × As × … and As = {0, 1, …, s − 1} is an alphabet, s ≥ 3; with the number \( y=f(x)={\varDelta}_{\upgamma_1{\upgamma}_2\dots {\upgamma}_n\dots}^{G_2^{\ast }}, \)

$$ {\gamma}_1=\left\{\begin{array}{l}0\kern1em \mathrm{for}\kern1em {\upalpha}_1=0,\\ {}1\kern1em \mathrm{for}\kern1em {\upalpha}_1\ne 0,\end{array}\right.{\gamma}_{n+1}=\left\{\begin{array}{l}{\gamma}_n\kern2.5em \mathrm{for}\kern1em {\upalpha}_{n+1}={\upalpha}_n,\\ {}1-{\gamma}_n\kern1em \mathrm{for}\kern1em {\upalpha}_{n+1}\ne {\upalpha}_n,\end{array}\right. $$

where the \( {G}_2^{\ast } \) -representation of numbers has the two-symbol alphabet A2 = {0, 1}. We prove that the function f is well-defined, continuous, and nowhere monotone. Its variational properties are also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. V. Prats’ovytyi, “Nowhere monotonic singular functions,” Nauk. Chasopys. Nats. Ped. Univ. Drahomanova, Ser. 1, Fiz.-Mat. Nauk., No. 12, 24–36 (2011).

  2. M. V. Prats’ovytyi and A. V. Kalashnikov, “Self-affine singular and nowhere monotone functions related to the Q-representation of real numbers,” Ukr. Mat. Zh., 65, No. 3, 405–417 (2013); English translation: Ukr. Math. J., 65, No. 3, 448–462 (2013).

  3. M. V. Prats’ovytyi and N. A. Vasylenko, “One family of continuous nowhere monotonic functions with fractal properties,” Nauk. Chasopys. Nats. Ped. Univ. Drahomanova, Ser. 1, Fiz.-Mat. Nauk., No. 14, 176–188 (2013).

  4. M. Pratsiovytyi and N. Vasylenko, “Fractal properties of functions defined in terms of Q-representation,” Internat. J. Math. Analysis, 7, No. 61-64, 3155–3169 (2013).

    Article  MathSciNet  Google Scholar 

  5. M. V. Prats’ovytyi and N. A. Vasylenko, “One family of continuous functions with everywhere dense set of singularities,” Nauk. Chasopys. Nats. Ped. Univ. Drahomanova, Ser. 1, Fiz.-Mat. Nauk., No. 12, 152–167 (2011).

  6. M. V. Prats’ovytyi and N. A. Vasylenko, “Distributions of probabilities on graphs for one class of nowhere monotonic functions,” in: Proc. of the Institute of Applied Mathematics and Mechanics, Ukrainian National Academy of Science [in Ukrainian], Kyiv, 26 (2013), pp. 159–171.

  7. S. B. Kozyrev, “On the topological density of winding functions,” Mat. Zametki, 33, Issue 1, 71–76 (1983).

    MathSciNet  MATH  Google Scholar 

  8. I. V. Zamrii and M. V. Prats’ovytyi, “Singularity of the digit inversor for the Q3-representation of the fractional part of a real number, its fractal and integral properties,” Nelin. Kolyv., 18, No. 1, 55–70 (2015); English translation: J. Math. Sci., 215, No. 3, 323–340 (2016).

  9. M. V. Prats’ovytyi, Fractal Approach to the Investigation of Singular Distributions [in Ukrainian], National Pedagogic University, Kyiv (1998).

    Google Scholar 

  10. M. V. Prats’ovytyi and O. V. Svynchuk, “Spread of values of a Cantor-type fractal continuous nonmonotone function,” Nelin. Kolyv., 21, No. 1, 116–130 (2018); English translation: J. Math. Sci., 240, No. 3, 342–357 (2019).

  11. M. V. Prats’ovytyi, “Calculus systems with variable bases and variable alphabet (or expansion of numbers in Cantor series),” Student. Fiz.-Mat. Etyudy, No. 8, 6–18 (2009).

  12. M. V. Prats’ovytyi, Geometry of the Classical Binary Representation of Real Numbers [in Ukrainian], National Pedagogic University, Kyiv (2012).

    Google Scholar 

  13. N. V. Pratsevityi, “Continuous Cantor projectors,” in: Methods for the Investigation of Algebraic and Topological Structures [in Russian], Kiev National Pedagogic University, Kiev (1989), pp. 95–105.

  14. A. F. Turbin and N. V. Pratsevityi, Fractal Sets, Functions, and Distributions [in Russian], Naukova Dumka, Kiev (1992).

    Google Scholar 

  15. K. A. Bush, “Continuous functions without derivatives,” Amer. Math. Monthly, 59, No. 4, 222–225 (1952).

    Article  MathSciNet  Google Scholar 

  16. W. Wunderlich, “Eine ¨uberall stetige und nirgends differenzierbare Funktion,” Elem. Math., 7, No. 4, 73–79 (1952).

    MathSciNet  MATH  Google Scholar 

  17. V. V. Koval, “Self-affine graphs of functions,” Nauk. Chasopys. Nats. Ped. Univ. Drahomanova, Ser. 1, Fiz.-Mat. Nauk., No. 5, 292–299 (2004).

  18. O. B. Panasenko, “Fractal dimension of the graphs of continuous Cantor projectors,” Nauk. Chasopys. Nats. Ped. Univ. Drahomanova, Ser. 1, Fiz.-Mat. Nauk., No 9, 104–111 (2008).

  19. M. V. Prats’ovytyi, “Fractal properties of one continuous nowhere differentiable function,” Nauk. Chasopys. Nats. Ped. Univ. Drahomanova, Fiz.-Mat. Nauk., No. 3, 351–362 (2002).

  20. G. M. Torbin and N. V. Pratsevityi, “Random variables with independent Q*-signs,” in: Random Evolutions: Theoretical and Applied Problems [in Russian], Kiev (1992), pp. 95–104.

  21. A. Ya. Khinchin, Continued Fractions [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  22. M. Kac, Statistical Independence in Probability Analysis and Number Theory, The Mathematical Association of America (1959).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Baranovs’kyi.

Additional information

Translated from Neliniini Kolyvannya, Vol. 22, No. 3, pp. 380–390, July–September, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prats’ovytyi, M.V., Baranovs’kyi, O.M. & Maslova, Y.P. Generalization of the Tribin Function. J Math Sci 253, 276–288 (2021). https://doi.org/10.1007/s10958-021-05227-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-021-05227-3

Navigation