Asymptotic Behavior of the Solutions of Functional-Differential Equation with Linearly Transformed Argument

We establish new properties of the solutions of functional-differential equation with linearly transformed argument.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    T. Kato and J. B. McLeod, “The functional-differential equation y ‵ (x) = ayx) + by(x),” Bull. Amer. Math. Soc., 77, 891–937 (1971).

  2. 2.

    T. Kato, “Asymptotic behaviour of solutions of the functional-differential equation y ‵ (x) = ayx) + by(x),” in: K. Schmitt (editor), Proc. of the Conf. “Delay and Functional Differential Equations and Their Applications,” Academic Press, New York (1972).

  3. 3.

    N. G. de Bruijn, “The difference-differential equation F ‵ (x) = eαx + βF(x − 1). I, II,” Indag. Math., 15, 449–464 (1953).

  4. 4.

    P. O. Frederickson, “Series solutions for certain functional-differential equations,” in: Lecture Notes in Mathematics, 243 (1971), pp. 249–254.

  5. 5.

    J. Carr and J. Dyson, “The functional differential equation y ‵ (x) = ayx) + by(x),” Proc. Roy. Soc. Edinburgh. Sect. A, 74, 165–174 (1976).

  6. 6.

    K. Mahler, “On a special functional equation,” J. London Math. Soc.(2), 15, 115–123 (1940).

    MathSciNet  Article  Google Scholar 

  7. 7.

    N. G. de Bruijn, “The asymptotically periodic behavior of the solutions of some linear functional equations,” Amer. J. Math., 71, No. 2, 313–330 (1949).

    MathSciNet  Article  Google Scholar 

  8. 8.

    N. G. de Bruijn, “On some linear functional equations,” Publ. Math. Debrecen., 1, 129–134 (1950).

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Y. Liu, “Asymptotic behaviour of functional-differential equations with proportional time delays,” Europ. J. Appl. Math., 7, No. 1, 11–30 (1996).

    MathSciNet  Article  Google Scholar 

  10. 10.

    D. V. Bel’skii and G. P. Pelyukh, “On the asymptotic properties of solutions of some functional-differential equations,” Nelin. Kolyv., 19, No. 3, 311–348 (2016); English translation: J. Math. Sci., 226, No. 3, 197–239 (2017).

  11. 11.

    G. P. Pelyukh and D. V. Bel’skii, “On the asymptotic properties of the solutions of a linear functional-differential equation of neutral type with constant coefficients and linearly transformed argument,” Nelin. Kolyv., 15, No. 4, 466–493 (2012); English translation: J. Math. Sci., 194, No. 4, 374–403 (2013).

  12. 12.

    V. Spiridonov, “Universal superpositions of coherent states and self-similar potentials,” Phys. Rev. A, 52, 1909–1935 (1995).

    Article  Google Scholar 

  13. 13.

    E. Yu. Romanenko, “Asymptotics of the solutions of a certain class of functional-differential equations,” Ukr. Mat. Zh., 41, No. 11, 1526–1532 (1989); English translation: Ukr. Math. J., 41, No. 11, 1314–1319 (1989).

  14. 14.

    E. Yu. Romanenko and T. S. Feshchenko, “On the asymptotic behavior of solutions of functional-differential equations of neutral type in the neighborhood of a critical point,” in: Investigation of Differential and Differential-Difference Equations [in Russian], Institute of Mathematics, Academy of Sciences of Ukr. SSR, Kiev (1980), pp. 107–121.

  15. 15.

    E. Yu. Romanenko and T. S. Feshchenko, “Estimate of growth of the solutions in the neighborhood of a critical point for one class of functional-differential equations,” in: Dynamical Systems and Differential Equations [in Russian], Institute of Mathematics, Academy of Sciences of Ukr. SSR, Kiev (1986), pp. 69–74.

  16. 16.

    E. Yu. Romanenko, “Representation of the local general solution of a certain class of differential-functional equations,” Ukr. Mat. Zh., 42, No. 2, 206–210 (1990); English translation: Ukr. Math. J., 42, No. 2, 182–186 (1990).

  17. 17.

    E. Yu. Romanenko and A. N. Sharkovskii, “Asymptotics of the solutions of linear functional-differential equations,” in: Asymptotic Behavior of Solutions of Differential-Difference Equations [in Russian], Institute of Mathematics, Academy of Sciences of Ukr. SSR, Kiev (1978), pp. 5–39.

  18. 18.

    H. Lehninger and Y. Liu, “The functional-differential equation y ‵ (t) = Ay(t) + By(qt) + Cy ‵ (qt) + f(t),” Europ. J. Appl. Math., 9, 81–91 (1998).

  19. 19.

    E.-B. Lim, “Asymptotic bounds of solutions of the functional differential equation,” SIAM J. Math. Anal., 9, No. 5, 915–920 (1978).

    MathSciNet  Article  Google Scholar 

  20. 20.

    D. V. Bel’skii and G. P. Pelyukh, “Asymptotic bounds for the solutions of a functional-differential equation with linearly transformed argument,” Nelin. Kolyv., 20, No. 4, 458–464 (2017); English translation: J. Math. Sci., 238, No. 3, 215–233 (2019).

  21. 21.

    A. Iserles, “On the generalized pantograph functional-differential equation,” Europ. J. Appl. Math., 4, 1–38 (1993).

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. V. Bel’skii.

Additional information

Translated from Neliniini Kolyvannya, Vol. 22, No. 3, pp. 369–379, July–September, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pelyukh, G.P., Bel’skii, D.V. Asymptotic Behavior of the Solutions of Functional-Differential Equation with Linearly Transformed Argument. J Math Sci 253, 263–275 (2021). https://doi.org/10.1007/s10958-021-05226-4

Download citation