Initial-Boundary-Value Problem for an Integrodifferential Equation of the Third Order

We study the initial-boundary-value problem for an integrodifferential equation of the third order. Replacing the required function and its time derivative by a combination of two new unknown functions, we reduce this problem to an equivalent problem in the form of a family of multipoint problems for a system of two Volterra integrodifferential equations of the first order and integral relations. We construct algorithms for finding the solution of the equivalent problem. By the method of parametrization, we establish the conditions for the unique solvability of a family of multipoint problems for the system of first-order Volterra integrodifferential equations in terms of the initial data. We also establish the conditions for the existence of the unique classical solution of the initial-boundary-value problem for the integrodifferential equation of the third order in terms of the coefficients of this equation and boundary functions.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. L. Sobolev, “One new problem in mathematical physics,” Izv. Ros. Akad. Nauk SSSR, Ser. Mat., 18, Issue 1, 3–50 (1954).

    MATH  Google Scholar 

  2. 2.

    Yu. B. Sinichenkov, Numerical Simulation of Hybrid Systems [in Russian], Izd. Politekhnich. Univ., Sankt-Peterburg (2004).

    Google Scholar 

  3. 3.

    A. M. Nakhushev, Problems with Displacement for Partial Differential Equations [in Russian], Nauka, Moscow (2006).

    Google Scholar 

  4. 4.

    A. M. Nakhushev, Loaded Equations and Their Applications [in Russian], Nauka, Moscow (2012).

    Google Scholar 

  5. 5.

    A. Guezane-Lakoud and D. Belakroum, “Time-discretization schema for an integrodifferential Sobolev type equation with integral conditions,” Appl. Math. Comput., 218, 4695–4702 (2012).

    MathSciNet  MATH  Google Scholar 

  6. 6.

    S.-R. Lin, “The singular perturbation of boundary value problem for third-order nonlinear vector integrodifferential equation and its application,” Appl. Math. Comput., 218, No. 5, 1746–1751 (2012).

    MATH  Google Scholar 

  7. 7.

    S. R. Grace and J. R. Graef, “On the asymptotic behavior of solutions of certain forced third order integrodifferential equations with d-Laplacian,” Appl. Math. Lett., 83, 40–45 (2018).

    MathSciNet  Article  Google Scholar 

  8. 8.

    T. A. Burton, Integral and Differential Equations, Academic Press, New York (1983).

    Google Scholar 

  9. 9.

    J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, Basel (1993).

    Google Scholar 

  10. 10.

    V. Lakshmikantham and M. R. M. Rao, Theory of Integro-Differential Equations, Gordon & Breach Science Publishers, Lausanne (1995).

    Google Scholar 

  11. 11.

    A.-M. Wazwaz, Linear and Nonlinear Integral Equations. Methods and Applications, Heidelberg, Berlin (2011).

  12. 12.

    S. Iskandarov, “One estimate for the solutions of a linear homogeneous Volterra integrodifferential equation of the first order in the critical case on the semiaxis,” Differents. Uravn., 52, No. 8, 1069–1074 (2016).

    Google Scholar 

  13. 13.

    D. S. Dzhumabaev and ´ E. A. Bakirova, “Criteria for the correct solvability of a linear two-point boundary-value problem for systems of integrodifferential equations,” Differents. Uravn., 46, No. 4, 550–564 (2010).

    MathSciNet  Google Scholar 

  14. 14.

    D. S. Dzhumabaev, “One method for the solution of a linear boundary-value problem for integrodifferential equation,” Zh. Vychisl. Mat. Mat. Fiz., 50, No. 7, 1209–1221 (2010).

    MathSciNet  MATH  Google Scholar 

  15. 15.

    D. S. Dzhumabaev, “One algorithm for finding the solution of a linear two-point boundary-value problem for integrodifferential equation,” Zh. Vychisl. Mat. Mat. Fiz., 53, No. 6, 75–98 (2013).

    Google Scholar 

  16. 16.

    D. S. Dzhumabaev and ´ E. A. Bakirova, “On the criteria of unique solvability for linear two-point boundary-value problems for systems of integrodifferential equations,” Differents. Uravn., 49, No. 9, 1125–1140 (2013).

    MATH  Google Scholar 

  17. 17.

    D. S. Dzhumabaev, “Necessary and sufficient conditions for the solvability of linear boundary-value problems for the Fredholm integrodifferential equations,” Ukr. Mat. Zh., 66, No. 8, 1074–1091 (2014); English translation: Ukr. Math. J., 66, No. 8, 1200–1219 (2015).

  18. 18.

    D. S. Dzhumabaev, “Criteria for the unique solvability of the linear boundary-value problem for an ordinary differential equation,” Zh. Vychisl. Mat. Mat. Fiz., 29, No. 1, 50–66 (1989).

    MathSciNet  MATH  Google Scholar 

  19. 19.

    O. B. Nesterenko, “Iteration method for the solution of integrodifferential equations with constraints,” Nelin. Kolyv., 10, No. 3, 336–347 (2007); English translation: Nonlin. Oscillat., 10, No. 3, 339–350 (2007).

  20. 20.

    A. Yu. Luchka and O. B. Nesterenko, “Projection method for the solution of integrodifferential equations with restrictions and control,” Nelin. Kolyv., 11, No. 2, 208–216 (2008); English translation: Nonlin. Oscillat., 11, No. 2, 219–228 (2008).

  21. 21.

    A. Yu. Luchka and O. B. Nesterenko, “Construction of solutions of integrodifferential equations with restrictions and control by projection-iterative method,” Nelin. Kolyv., 12, No. 1, 83–91 (2009); English translation: Nonlin. Oscillat., 12, No. 1, 85–93 (2009).

  22. 22.

    O. B. Nesterenko, “Modified projection-iterative method for weakly nonlinear integrodifferential equations with parameters,” Nelin. Kolyv., 16, No. 2, 238–245 (2013); English translation: J. Math. Sci., 198, No. 3, 328–335 (2014).

  23. 23.

    A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems, de Gruyter, Berlin (2016).

  24. 24.

    A. M. Samoilenko and N. I. Ronto, Numerical-Analytic Methods for the Investigation of Solutions of Boundary-Value Problems [in Russian], Naukova Dumka, Kiev (1985).

    Google Scholar 

  25. 25.

    I. T. Kiguradze, “Boundary-value problems for systems of ordinary differential equations,” in: Contemporary Problems of Mathematics. Latest Achievements [in Russian], 30 (1987), pp. 3–103.

  26. 26.

    R. P. Agarwal, Focal Boundary-Value Problems for Differential and Difference Equations, Kluwer Academic Publishers, Dordrecht (1998).

    Google Scholar 

  27. 27.

    A. M. Samoilenko, V. N. Laptinskii, and K. K. Kenzhebaev, Constructive Methods for the Investigation of Solutions of Periodic and Multipoint Boundary-Value Problems [in Russian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (1999).

  28. 28.

    A. E. Imanchiev, “Necessary and sufficient conditions for the unique solvability of linear multipoint boundary-value problems,” Izv. MON RK, NAN RK, Ser. Fiz.-Mat., No. 3, 79–84 (2002).

  29. 29.

    D. S. Dzhumabaev and A. E. Imanchiev, “Correct solvability of the linear multipoint boundary-value problem,” Mat. Zh., 5, No. 1(15), 30–38 (2002).

  30. 30.

    B. I. Ptashnik, Ill-Posed Boundary-Value Problems for Partial Differential Equations [in Russian], Naukova Dumka, Kiev (1984).

  31. 31.

    I. Kiguradze and T. Kiguradze, “On solvability of boundary-value problems for higher-order nonlinear hyperbolic equations,” Nonlin. Anal., 69, 1914–1933 (2008).

    MathSciNet  Article  Google Scholar 

  32. 32.

    A. T. Assanova and A. E. Imanchiev, “On conditions of the solvability of nonlocal multipoint boundary value problems for quasilinear systems of hyperbolic equations,” Eurasian Math. J., 6, No. 4, 19–28 (2015).

    MathSciNet  MATH  Google Scholar 

  33. 33.

    A. T. Assanova and A. E. Imanchiev, “On the unique solvability of a family of multipoint problems for Volterra integrodifferential equations,” Mat. Zh., 16, No. 3, 20–34 (2016).

    Google Scholar 

  34. 34.

    A. T. Asanova, “Multipoint problem for a system of hyperbolic equations with mixed derivative,” Nelin. Kolyv., 17, No. 3, 295–313 (2014); English translation: J. Math. Sci., 212, No. 3, 213–233 (2016).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. T. Assanova.

Additional information

Translated from Neliniini Kolyvannya, Vol. 22, No. 3, pp. 291–311, July–September, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Assanova, A.T., Vasilina, G.K. & Imanchiev, A.E. Initial-Boundary-Value Problem for an Integrodifferential Equation of the Third Order. J Math Sci 253, 181–203 (2021). https://doi.org/10.1007/s10958-021-05222-8

Download citation