Derivations of Group Algebras

Abstract

In the paper, a method of describing the outer derivations of the group algebra of a finitely presentable group is given. The description of derivations is given in terms of characters of the groupoid of the adjoint action of the group.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. Connes, Noncommutative Geometry, Academic Press, New York (1994).

    Google Scholar 

  2. 2.

    H. G. Dales, “Automatic continuity: a survey,” Bull. London Math. Soc., 10, No. 2, 129–183 (1978).

    MathSciNet  Article  Google Scholar 

  3. 3.

    H. G. Dales, Banach Algebras and Automatic Continuity, Clarendon Press, Oxford Univ. Press, New York (2000).

  4. 4.

    A. V. Ershov, Categories and Functors [in Russian], Nauka, Saratov (2012).

  5. 5.

    F. Ghahramani, V. Runde, and G. Willis, “Derivations on group algebras,” Proc. London Math. Soc., 80, No. 2, 360–390 (2000).

  6. 6.

    B. E. Johnson, “The derivation problem for group algebras of connected locally compact groups,” J. London Math. Soc., 63, No. 2, 441–452 (2001).

  7. 7.

    V. Losert, “The derivation problem for group algebras,” Ann. Math., 168, No. 1, 221–246 (2008).

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Arutyunov.

Additional information

Dedicated to the memory of Yu. P. Solovyov

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 21, No. 6, pp. 65–78, 2016.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arutyunov, A.A., Mishchenko, A.S. & Shtern, A.I. Derivations of Group Algebras. J Math Sci 248, 709–718 (2020). https://doi.org/10.1007/s10958-020-04906-x

Download citation