Skip to main content
Log in

Complete Convex Solutions of Monge–Ampère-Type Equations and their Analogs

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we study complete convex solutions of certain nonlinear elliptic equations by using geometric methods. We present a proof of the Jörgens–Calabi–Pogorelov theorem about improper convex affine spheres based on the study of complete convex solutions of the simplest Monge–Ampère equation. We consider a similar problem for Monge–Ampère equations of more general types. We prove that, under certain assumptions, solutions of these equations are quadratic polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Agmon, A. Douglis, and L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I,” Commun. Pure Appl. Math., 12, 623–727 (1959).

    Article  MathSciNet  Google Scholar 

  2. A. D. Aleksandrov, “On the theory of mixrd volumes of convex bodies. IV. Mixed discriminants and mixed volumes,” Mat. Sb., 3, No. 2, 227–251 (1938).

    MathSciNet  Google Scholar 

  3. R. Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York etc. (1970).

    MATH  Google Scholar 

  4. W. Blaschke, Vorlesungen über Differentialgeometrie. II. Affine Differentialgeometrie, Springer-Verlag, Berlin (1923).

  5. L. Caffarelli, L. Nirenberg, and J. Spruck, “The Dirichlet problem for nonlinear second order elliptic equations. III. Functions of the eigenvalues of Hessian,” Acta Math., 155, Nos. 3, 4, 261–304 (1985).

  6. E. Calabi, “Improper affine hyperspheres of convex type and a generalizations of a theorem by K. Jörgens,” Michigan Math. J., 5, No. 2, 105–126 (1958).

    Article  MathSciNet  Google Scholar 

  7. E. Calabi, “An extension of E. Hopf’s maximum principle with an application to Riemannian geometry,” Duke Math. J., 25, 45–56 (1958).

    Article  MathSciNet  Google Scholar 

  8. S. Y. Cheng and S. T. Yau, “Complete affine hypersurfaces. I. The completeness of affine metrics,” Commun. Pure Appl. Math., 39, 839–866 (1986).

    Article  MathSciNet  Google Scholar 

  9. A. Gray, Tubes, Addison-Wesley, Redwood City, CA (1990).

  10. K. Jörgens, “¨Uber die Lösungen der Differentialgleichung rt−s2 = 1,” Math. Ann., 127, 130–134 (1954).

    Article  MathSciNet  Google Scholar 

  11. V. N. Kokarev, “Complete convex solutions of the equation spurm(zij) = 1,” Mat. Fiz. Anal. Geom., 3, No. 1/2, 102–117 (1996).

    MathSciNet  Google Scholar 

  12. V. N. Kokarev, “On the equation of an improper convex affine sphere: a generalization of a theorem of Jörgens,” Mat. Sb., 194, No. 11, 65–80 (2003).

    Article  MathSciNet  Google Scholar 

  13. V. N. Kokarev, “On complete convex solutions of equations similar to the improper affine sphere equation,” J. Math. Phys. Anal. Geom., 3, No. 4, 448–467 (2007).

    MATH  Google Scholar 

  14. P. Lancaster, Theory of Matrices, Academic Press, New York–London (1969).

    MATH  Google Scholar 

  15. A. V. Pogorelov, Multidimensional Minkowski Problem [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  16. A. V. Pogorelov, Multidimensional Monge–Ampère equation det(zij) = φ(z1,. . . , zn, z, x1, . . . , xn) [in Russian], Nauka, Moscow (1988).

  17. G. Ţiţeica, “Sur one nouvelle classe de surfaces,” C. R. Acad. Sci. Paris, 145, 132–133 (1907).

    Google Scholar 

  18. G. Ţiţeica, “Sur one nouvelle classe de surfaces,” C. R. Acad. Sci. Paris, 146, 165–166 (1908).

    Google Scholar 

  19. V. L. Zaguskin, “Circumscribed and inscribes ellipsoids of extremal volume,” Usp. Mat. Nauk, 13, No. 6, 89–92 (1958).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kokarev.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 147, Proceedings of the Workshop on Algebra and Geometry of the Samara University, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokarev, V.N. Complete Convex Solutions of Monge–Ampère-Type Equations and their Analogs. J Math Sci 248, 303–337 (2020). https://doi.org/10.1007/s10958-020-04874-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-04874-2

Keywords and phrases

AMS Subject Classification

Navigation