Skip to main content
Log in

VAR Model Based Clustering Method for Multivariate Time Series Data

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

In this study, we develop a clustering method for multivariate time series data. In practical situations, such problems can arise in finance, economics, control theory, and health science. First, we propose to use a simulation based approximation to the test statistic and develop a method to test if two multivariate time series are coming from same VAR process. Then, the testing method is extended to a group of multivariate time series objects. Finally, a new clustering algorithm is developed using the testing method. The proposed algorithm does not use a predetermined number of clusters and finds the best possible clustering from the data. Empirical studies are provided in this paper, and they establish the accuracy of the algorithm. Finally, as a practical example, the algorithm is implemented to identify activities of different persons from a real-life data obtained from single chest-mounted accelerometers worn by different individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Abraham, P. A. Cornillon, E. Matzner-Løber, and N. Molinari, “Unsupervised curve clustering using B-splines,” Scand. J. Stat., 30, No. 3, 581–595 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Antoniadis, J. Bigot, and R. von Sachs, “A multiscale approach for statistical characterization of functional images,” J. Comput. Graph. Stat., 18, No. 1, 216–237 (2009).

    Article  MathSciNet  Google Scholar 

  3. L. Bao and S. Intille, “Activity recognition from user-annotated acceleration data,” Pervasive Computing, 1–17 (2004).

  4. P. Bloomfield, Fourier Analysis of Time Series: An Introduction, John Wiley & Sons, New York (2004).

    MATH  Google Scholar 

  5. G. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series Analysis: Forecasting and Control, John Wiley and Sons, New York (2015).

    MATH  Google Scholar 

  6. P. Casale, P. Pujol, and P. Radeva, “Personalization and user verification in wearable systems using biometric walking patterns,” Persow. Ubiq. Comput., 16, No. 5, 563–580 (2012).

    Article  Google Scholar 

  7. J.-M. Chiou and P.-L. Li, “Functional clustering and identifying substructures of longitudinal data,” J. R. Stat. Soc. Ser. B, 69, No. 4, 679–699 (2007).

    Article  MathSciNet  Google Scholar 

  8. D. Degras, Z. Xu, T. Zhang, and W. B. Wu, “Testing for parallelism among trends in multiple time series,” IEEE Trans. Signal Process., 60, No. 3, 1087–1097 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum likelihood from incomplete data via the EM algorithm,” J. R. Stat. Soc. Ser. B, 39, No. 1, 1–38 (1977).

    MathSciNet  MATH  Google Scholar 

  10. D.A. Dickey and W.A. Fuller, “Distribution of the estimators for autoregressive time series with a unit root,” J. Am. Stat. Assoc., 74, No. 366a, 427–431 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  11. Z. Gao, Y. Yang, P. Fang, Y. Zou, C. Xia, and M. Du, “Multiscale complex network for analyzing experimental multivariate time series,” Europhys. Let., 109, No. 3, 30005 (2015).

    Article  Google Scholar 

  12. L. A. Garcia-Escudero and A. Gordaliza, “A proposal for robust curve clustering,” J. Classif., 22, No. 2, 185–201 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Hall, Y. K. Lee, and B. U. Park, “A method for projecting functional data onto a low-dimensional space,” J. Comput. Graph. Stat., 16, No. 4, 799–812 (2007).

    Article  MathSciNet  Google Scholar 

  14. J.D. Hamilton, Time Series Analysis, Vol. 2, Princeton University Press, Princeton (1994).

    MATH  Google Scholar 

  15. H. Izakian, W. Pedrycz, and I. Jamal, “Fuzzy clustering of time series data using dynamic time warping distance,” Eng. Appl. Artif. Intell., 39, 235–244 (2015).

    Article  Google Scholar 

  16. Y. Kakizawa, R. H. Shumway, and M. Taniguchi, “Discrimination and clustering for multivariate time series,” J. Am. Stat. Assoc., 93, No. 441, 328–340 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  17. T. W. Liao, “Clustering of time series data — a survey,” Pattern Recognit., 38, No. 11, 1857–1874 (2005).

    Article  MATH  Google Scholar 

  18. S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inform. Theor., 28, No. 2, 129–137 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Lütkepohl, New Introduction to Multiple Time Series Aanalysis, Springer, New York (2005).

    Book  MATH  Google Scholar 

  20. J. MacQueen, “Some methods for classification and analysis of multivariate observations,” in: Proc. Fifth Berkeley Sympos. Math. Stat. and Probability, Vol. I: Statistics, University of California Press, Berkeley (1967), pp. 281–297.

  21. A. Mannini and A.M. Sabatini, “Machine learning methods for classifying human physical activity from on-body accelerometers,” Sensors, 10, No. 2, 1154–1175 (2010).

    Article  Google Scholar 

  22. T. Oates, L. Firoiu, and P. Cohen, “Clustering time series with hidden Markov models and dynamic time warping,” in: Proceedings of the IJCAI-99 Workshop on Neural, Symbolic and Reinforcement Learning Methods for Sequence Learning, Stockholm (1999), pp. 17–21.

  23. T. Santos and R. Kern, “A literature survey of early time series classification and deep learning,” SAMI@ iKNOW (2016).

  24. A. Singhal and D. E. Seborg, “Clustering multivariate time-series data,” J. Chemomet., 19, No. 8, 427–438 (2005).

    Article  Google Scholar 

  25. P. Smyth et al., “Clustering sequences with hidden Markov models,” Adv. Neur. Inform. Process Syst., 648–654 (1997).

  26. T. Tarpey and K. K. J. Kinateder, “Clustering functional data,” J. Classif., 20, No. 1, 93–114 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  27. J. H. Ward Jr., “Hierarchical grouping to optimize an objective function,” J. Am. Stat. Assoc., 58, 236–244 (1963).

    Article  MathSciNet  Google Scholar 

  28. W. B. Wu, “Nonlinear system theory: Another look at dependence,” Proc. Natl. Acad. Sci. USA, 102, No. 40, 14150–14154 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  29. K. Yang and C. Shahabi, “A PCA-based similarity measure for multivariate time series,” in: Proceedings of the 2nd ACM International Workshop on Multimedia Databases, ACM (2004), pp. 65–74.

  30. T. Zhang, “Clustering high-dimensional time series based on parallelism,” J. Am. Stat. Assoc., 108, No. 502, 577–588 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  31. E. Zivot and J. Wang, “Vector autoregressive models for multivariate time series,” Modeling Financial Time Series with S-PLUS, 385–429 (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Deb.

Additional information

Proceedings of the XXXIV International Seminar on Stability Problems for Stochastic Models, Debrecen, Hungary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, S. VAR Model Based Clustering Method for Multivariate Time Series Data. J Math Sci 237, 754–765 (2019). https://doi.org/10.1007/s10958-019-04201-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-019-04201-4

Navigation