Skip to main content
Log in

Combination of the Laguerre Transform with the Boundary-element Method for the Solution of Integral Equations with Retarded Kernel

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We apply the Laguerre transform with respect to time to a time-dependent boundary-value integral equation encountered in the solution of three-dimensional Dirichlet initial-boundary-value problems for the homogeneous wave equation with homogeneous initial conditions by using the retarded potential of single layer. The obtained system of boundary integral equations is reduced to a sequence of Fredholm integral equations of the first kind that differ solely by the recursively dependent right-hand sides. To find their numerical solution, we use the boundary-element method. We establish an asymptotic estimate of the error of numerical solution and present the results of numerical simulations aimed at finding the solutions of retarded-potential integral equations for model examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Galazyuk, “Method of Chebyshev–Laguerre polynomials in a mixed problem for a linear differential equation of the second order with constant coefficients,” Dop. Akad. Nauk Ukr. RSR. Ser. А, No. 1, 3–7 (1981).

  2. N. S. Koshlyakov, É. B. Gliner, and M. M. Smirnov, Partial Differential Equations of Mathematical Physics [in Russian], Vysshaya Shkola, Moscow (1970).

  3. S. V. Litynskyy and A. O. Muzychuk, “Solution of mixed problems for the wave equation with the use of retarded surface potentials and Laguerre transform,” Mat. Studii, 44, No. 2, 185–203 (2015).

    MathSciNet  MATH  Google Scholar 

  4. S. Litynskyy, Yu. Muzychuk and A. Muzychuk, “On weak solutions of boundary-value problems for an infinite triangular system of elliptic equations,” Visn. L’viv. Univ. Ser. Prykl. Mat. Inform., Issue 15, 52–70 (2009).

  5. I. V. Lyudkevich and A. E. Muzychuk, Numerical Solutions of Boundary-Value Problems for the Wave Equation [in Russian], Lvov State University, Lvov (1990).

  6. G. I. Marchuk and V. I. Agoshkov, Introduction to Projection-Grid Methods [in Russian], Nauka, Moscow (1981).

  7. H. M. Polozhii, Equations of Mathematical Physics [in Ukrainian], Radyans’ka Shkola, Kyiv (1959).

  8. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 1: Functional Analysis, Academic Press, New York (1972).

    Chapter  Google Scholar 

  9. H. T. Sulym, V. K. Opanasovych, I. M. Turchyn, and V. V. Khoma, “Transient thermal stressed state in a half strip with coating caused by heating of its lateral surface,” Mat. Met. Fiz.-Mekh. Polya, 58, No. 1, 132–142 (2015); English translation: J. Math. Sci., 222, No. 2, 167–180 (2017).

  10. A. Bamberger, T. Ha Duong, and J. C. Nedelec, “Formulation variationnelle espace-temps pour le calcul par potentiel retardé de la diffraction d’une onde acoustique (I),” Math. Meth. Appl. Sci., 8, No. 1, 405–435 (1986).

    Article  Google Scholar 

  11. A. Bamberger, T. Ha Duong, J. C. Nedelec, “Formulation variationnelle pour le calcul de la diffraction d’une onde acoustique par une surface rigide,” Math. Meth. Appl. Sci., 8, No. 1, 598–608 (1986).

    Article  MathSciNet  Google Scholar 

  12. L. Banjai, C. Lubich, and F.-J. Sayas, “Stable numerical coupling of exterior and interior problems for the wave equation,” Numer. Math., 129, No. 4, 611–646 (2015).

    Article  MathSciNet  Google Scholar 

  13. O. P. Bruno and L. A. Kunyansky, “A fast, high-order algorithm for the solution of surface scattering problems: Basic implementation, tests, and applications,” J. Comput. Phys., 169, No. 1, 80–110 (2001).

    Article  MathSciNet  Google Scholar 

  14. M. Costabel, “Boundary integral operators on Lipschitz domains: elementary results,” SIAM J. Math. Anal., 19, No. 3, 613–626 (1988).

    Article  MathSciNet  Google Scholar 

  15. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 4: Integral Equations and Numerical Methods, Springer, Berlin (1990).

  16. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 5: Evolution Problems I, Springer, Berlin (1992).

  17. P. J. Davies, “Numerical stability and convergence of approximations of retarded potential integral equations,” SIAM J. Numer. Anal., 31, No. 3, 856–875 (1994).

    Article  MathSciNet  Google Scholar 

  18. V. Domínguez and F.-J. Sayas, “Some properties of layer potentials and boundary integral operators for the wave equation,” J. Integral Equat. Appl., 25, No. 2, 253–294 (2013).

    Article  MathSciNet  Google Scholar 

  19. W. Hackbusch, W. Kress, and S. A. Sauter, “Sparse convolution quadrature for time domain boundary integral formulations of the wave equation,” IMA. J. Numer. Anal., 29, No. 1, 158–179 (2009).

    Article  MathSciNet  Google Scholar 

  20. T. Ha-Duong, “On retarded potential boundary integral equations and their discretization,” in: Topics in Computational Wave Propagation – Direct and Inverse Problems, in: Lecture Notes in Computational Science and Engineering, Vol. 31, Springer, Berlin, (2003), pp. 301–336; https://link.springer.com/chapter/10.1007%2F978-3-642-55483-4_8#page-1.

  21. G. C. Hsiao and W. L. Wendland, “Boundary element methods: foundation and error analysis,” in: E. Stein, R. de Borst, and T. J. R. Hughes (editors), Encyclopedia of Computational Mechanics, Vol. 1: Fundamentals, Wiley & Sons, Chichester (2004), pp. 339–374.

  22. G. C. Hsiao and W. L. Wendland, Boundary Integral Equations, Springer, Berlin (2008).

    Book  Google Scholar 

  23. J. Keilson, W. Nunn, and U. Sumita, The Laguerre Transform, Professional Paper 284 – May 1980, Center for Naval Analyses, Operations Evaluation Group, Alexandria (1980).

  24. C. Lubich, “On the multistep time discretization of linear initial-boundary-value problems and their boundary integral equations,” Numer. Math., 67, No. 3, 365–389 (1994).

    Article  MathSciNet  Google Scholar 

  25. Yu. A. Muzychuk and R. S. Chapko, “On variational formulations of inner boundary-value problems for infinite systems of elliptic equations of special kind,” Mat. Studii, 38, No. 1, 12–34 (2012).

    MathSciNet  MATH  Google Scholar 

  26. I. H. Sloan, “Error analysis of boundary integral methods,” Acta Numer., 1, 287–339 (1992); https://doi.org/10.1017/S0962492900002294.

    Article  MathSciNet  MATH  Google Scholar 

  27. O. Steinbach, Numerical Approximation Methods for Elliptic Boundary-Value Problems. Finite and Boundary Elements, Springer, New York (2008).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 59, No. 3, pp. 89–101, July–September, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litynskyy, S.V., Muzychuk, Y.А. & Muzychuk, А.О. Combination of the Laguerre Transform with the Boundary-element Method for the Solution of Integral Equations with Retarded Kernel. J Math Sci 236, 98–114 (2019). https://doi.org/10.1007/s10958-018-4100-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-4100-x

Navigation