Advertisement

Journal of Mathematical Sciences

, Volume 231, Issue 5, pp 665–677 | Cite as

Construction of a Solution of the Problem of Stability of a Bar with Arbitrary Continuous Parameters

  • Yu. S. Krutii
Article
  • 13 Downloads

We consider the problem of stability of a bar with arbitrary continuous variable flexural stiffness compressed by an arbitrary continuously applied variable axial longitudinal force. For the first time, we construct the exact solution of the corresponding differential equation of longitudinal bending. As a result, we obtain the formulas for displacements and internal forces in any cross section of the bar in the analytic form.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. A. Alfutov, Fundamentals of the Numerical Analysis of Stability of the Elastic Systems [in Russian], Mashinostroenie, Moscow (1978).Google Scholar
  2. 2.
    A. S. Vol’mir, Stability of Deformable Systems [in Russian], Nauka, Moscow (1967).Google Scholar
  3. 3.
    F. R. Gantmakher, Theory of Matrices [in Russian], Nauka, Moscow (1988).zbMATHGoogle Scholar
  4. 4.
    A. N. Dinnik, “On the longitudinal bending of bars with variable cross sections,” Izv. Donsk. Politekh. Inst., No. 1, 390–404 (1913).Google Scholar
  5. 5.
    A. N. Dinnik, Longitudinal Bending. Twisting [in Russian], Izd. Akad. Nauk SSSR, Moscow (1955).Google Scholar
  6. 6.
    V. A. Kiselev, Structural Mechanics [in Russian], Stroiizdat, Moscow (1980).Google Scholar
  7. 7.
    Yu. S. Krutii, “Exact solution of the differential equation of free transverse vibration of an inhomogeneous straight bar of variable cross section with continuously distributed variable mass,” Stroit. Mekh. Raschet Sooruzh., No. 5, 47–53 (2011).Google Scholar
  8. 8.
    A. V. Perel’muter and V. I. Slivker, Stability of the Equilibrium of Structures and Related Problems [in Russian], Vol. 1, Izd. SKAD SOFT (2007).Google Scholar
  9. 9.
    V. E. Prikhod’ko, “Investigation of longitudinally compressed bars of variable stiffness,” Vopr. Proektir. Proizv. Konstruk. Letat. Apparat., Issue 2(66), 35–41 (2011).Google Scholar
  10. 10.
    I. A. Birger and Ya. G. Panovko (editors), Strength, Stability, and Vibration. A Handbook [in Russian], Vol. 3, Mashinostroenie, Moscow (1968).Google Scholar
  11. 11.
    A. R. Rzhanitsyn, Structural Mechanics [in Russian], Vysshaya Shkola, Moscow (1991).Google Scholar
  12. 12.
    A. F. Smirnov, Stability and Vibration of Structures [in Russian], Transzheldorizdat, Moscow (1958).Google Scholar
  13. 13.
    M. F. Fedoryuk, Ordinary Differential Equations [in Russian], Nauka, Moscow (1985).zbMATHGoogle Scholar
  14. 14.
    F. Arbabi and F. Li, “Buckling of variable cross-section columns: Integral equation approach,” J. Struct. Eng., 117, No. 8, 2426–2441 (1991).CrossRefGoogle Scholar
  15. 15.
    M. T. Atay, “Determination of buckling loads of tilted buckled column with varying flexural stiffness using variational iteration method,” Int. J. Nonlin. Sci. Numer. Simulat., 11, No. 2, 97–103 (2010).Google Scholar
  16. 16.
    M. T. Atay, “Determination of critical buckling loads for variable stiffness Euler columns using homotopy perturbation method,” Int. J. Nonlin. Sci. Numer. Simulat., 10, No. 2, 199–206 (2009).CrossRefGoogle Scholar
  17. 17.
    M. T. Atay and S. B. Coşkun, “Elastic stability of Euler columns with a continuous elastic restraint using variational iteration method,” Comput. Math. Appl., 58, No. 11-12, 2528–2534 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    S. B. Coşkun (editor), Advances in Computational Stability Analysis, InTech, Rijeka (2012). https://www.intechopen.com/books/advances-in-computational-stability-analysis.
  19. 19.
    S. B. Coşkun, “Analysis of tilt-buckling of Euler columns with varying flexural stiffness using homotopy perturbation method,” Math. Model. Anal., 15, No. 3, 275–286 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    S. B. Coşkun, “Determination of critical buckling loads for Euler columns of variable flexural stiffness with a continuous elastic restraint using homotopy perturbation method,” Int. J. Nonlin. Sci. Numer. Simulat., 10, No. 2, 191–197 (2009).Google Scholar
  21. 21.
    S. B. Coşkun and M. T. Atay, “Determination of critical buckling load for elastic columns of constant and variable cross-sections using variational iteration method,” Comput. Math. Appl., 58, No. 11–12, 2260–2266 (2009).MathSciNetzbMATHGoogle Scholar
  22. 22.
    M. Eisenberger, “Buckling loads for variable cross-section members with variable axial forces,” Int. J. Solids Struct., 27, No. 2, 135–143 (1991).CrossRefGoogle Scholar
  23. 23.
    I. Elishakoff and F. Pellegrini, “Application of Bessel and Lommel functions and the undetermined multiplier Galerkin method version for instability of non-uniform column,” J. Sound Vibrat., 115, No. 1, 182–186 (1987).CrossRefGoogle Scholar
  24. 24.
    I. Elishakoff and F. Pellegrini, “Exact solutions for buckling of some divergence-type nonconservative systems in terms of Bessel and Lommel functions,” Comput. Meth. Appl. Mech. Eng., 66, No. 1, 107–119 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    J. M. Gere and W. O. Carter, “Critical buckling loads for tapered columns,” J. Struct. Division. ASCE, 88, No. 1, 1–11 (1962).Google Scholar
  26. 26.
    Y. Huang and Q.-Z. Luo, “A simple method to determine the critical buckling loads for axially inhomogeneous beams with elastic restraint,” Comput. Math. Appl., 61, No. 9, 2510–2517 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Q. Li, H. Cao, and G. Li, “Stability analysis of a bar with multi-segments of varying cross-section,” Comput. Struct., 53, No. 5, 1085–1089 (1994).CrossRefzbMATHGoogle Scholar
  28. 28.
    Q. Li, H. Cao, and G. Li, “Stability analysis of bars with varying cross-section,” Int. J. Solids Struct., 32, No. 21, 3217–3228 (1995).CrossRefzbMATHGoogle Scholar
  29. 29.
    F. Okay, M. T. Atay, and S. B. Coşkun, “Determination of buckling loads and mode shapes of a heavy vertical column under its own weight using the variational iteration method,” Int. J. Nonlin. Sci. Numer. Simulat., 11, No. 10, 851–857 (2010).CrossRefGoogle Scholar
  30. 30.
    J. H. B. Sampaio, Jr. and J. R. Hundhausen, “A mathematical model and analytical solution for buckling of inclined beamcolumns,” Appl. Math. Model., 22, No. 6, 405–421 (1998).CrossRefGoogle Scholar
  31. 31.
    A. Siginer, “Buckling of columns of variable flexural stiffness,” J. Eng. Mech. ASCE, 118, No. 3, 640–643 (1992).CrossRefGoogle Scholar
  32. 32.
    S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability, McGraw Hill, New York (1961).Google Scholar
  33. 33.
    C. M. Wang, C. Y. Wang, and J. N. Reddy, Exact Solutions for Buckling of Structural Members, CRC Press LLC, Boca Raton (2005).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yu. S. Krutii
    • 1
  1. 1.Odesa State Academy of Civil Engineering and ArchitectureOdesaUkraine

Personalised recommendations