Skip to main content
Log in

Criteria of the Uniqueness of Solutions and Well-Posedness of Inverse Source Problems

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we study the relation between the well-posedness of the inverse problem of the recovering the source in an abstract differential equation and the basis property of a certain class of function systems in a Hilbert space. As a consequence, based on the results concerning the well-posedness of inverse problems, we obtain the Riesz basis property and—under certain additional conditions—the Bari basis property of such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Agmon, “On eigenfunctions and eigenvalues of general elliptic boundary-value problems,” Commun. Pure Appl. Math., 15, 119–147 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Agmon, “On kernels, eigenvalues and eigenfunctions of operators related to elliptic problems,” Commun. Pure Appl. Math., 18, 627–663 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, New York (1965).

    MATH  Google Scholar 

  4. M. S. Agranovich, “On series with respect to root vectors of operators associated with forms having symmetric principal part,” Funkts. Anal. Prilozh., 28, No. 3, 1–21 (1994).

    MATH  Google Scholar 

  5. M. S. Agranovich, “Spectral problems for second-order strongly elliptic systems in smooth and nonsmooth domains,” Usp. Mat. Nauk, 57, No. 5 (347), 3–78 (2002).

    Article  MATH  Google Scholar 

  6. M. S. Agranovich, A Course in the Theory of Linear Operators [in Russian], Moscow (2005); http://www.agranovich.nm.ru

  7. N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Spaces [in Russian], Nauka, Moscow (1966).

    MATH  Google Scholar 

  8. A. G. Aslanyan and V. B. Lidskii, “Spectrum of an elliptic equation,” Mat. Zametki, 7, No. 4, 495–502 (1970).

    MathSciNet  Google Scholar 

  9. S. Banach, Theory of Linear Operations, North-Holland, Amsterdam (1987).

    MATH  Google Scholar 

  10. N. Bary, “Sur la stabilité de certaines propriétés des systèmes orthogonaux (première partie),” Mat. Sb., 12 (54), No. 1, 3–27 (1943).

    MathSciNet  MATH  Google Scholar 

  11. N. Bary, “Sur les systèmes complets de fonctions orthogonales,” Mat. Sb., 14 (56), Nos. 1-2, 51–108 (1944).

    MathSciNet  MATH  Google Scholar 

  12. N. Bary, “Biorthogonal systems and bases in Hilbert spaces,” Uch. Zap. Mosk. Univ. Mat., IV (148), 69–107 (1951).

    MathSciNet  Google Scholar 

  13. F. Browder, “On the eigenfunctions and eigenvalues of the general linear elliptic differential operator,” Proc. Natl. Acad. Sci. U.S.A., 39, 433–439 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Browder, “On the spectral theory of strongly elliptic differential operators,” Proc. Natl. Acad. Sci. U.S.A., 45, 1423–1431 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  15. Yu. S. Eidelman, “Uniqueness of solutions of an inverse problem for a differential equation in a Banach space,” Differ. Uravn., 23, No. 9, 1647–1649 (1987).

    MathSciNet  Google Scholar 

  16. Yu. S. Eidelman, “Solvability conditions for inverse problems for evolutionary equations,” Dokl. Akad. Nauk USSR, Ser. A, 7, 28–31 (1990).

    Google Scholar 

  17. Yu. S. Eidelman, “Inverse problems for parabolic and elliptic differential-operator equations,” Ukr. Mat. Zh., 45, No. 1, 120–127 (1993).

    MathSciNet  Google Scholar 

  18. Yu. S. Eidelman, “An inverse problem for a second-order differential equation in a Banach space,” Abstr. Appl. Anal., 9, No. 12, 997–1005 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  19. Functional Analysis [in Russian], S. G. Krein, ed., Nauka, Moscow (1964).

  20. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin (1983).

    Book  MATH  Google Scholar 

  21. I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Am. Math. Soc., Providence, Rhode Island (1969).

  22. L. Hörmander, The Analysis of Linear Partial Differential Operators, I. Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin–Heidelberg (2003).

    MATH  Google Scholar 

  23. V. A. Il’in, “On convergence of expansions in eigenfunctions of the Laplace operator,” Usp. Mat. Nauk, 13, No. 1 (79), 87–180 (1958).

    MathSciNet  Google Scholar 

  24. V. A. Il’in, Spectral Theory of Differential Operators. Self-Adjoint Differential Operators [in Russian], Nauka, Moscow (1991).

    Google Scholar 

  25. V. A. Ilin and L. V. Kritskov, “Properties of spectral expansions corresponding to non-selfadjoint differential operators,” J. Math. Sci., 116, No. 5, 3489–3550 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  26. V. A. Il’in and E. I. Moiseev, “The system of root functions of the directional derivative problem is not a basis,” Differ. Uravn., 30, No. 1, 128–143 (1994).

    MATH  Google Scholar 

  27. V. A. Il’in and I. A. Shishmarev, “On the equivalence of the systems of generalized and classical eigenfunctions,” Izv. Akad. Nauk SSSR Ser. Mat., 24, No. 5, 757–774 (1960).

    MathSciNet  Google Scholar 

  28. V. M. Isakov, “On one class of inverse problems for parabolic equations,” Dokl. Akad. Nauk SSSR, 263, No. 6, 1296–1299 (1982).

    MathSciNet  Google Scholar 

  29. V. M. Isakov, “Inverse parabolic problems with the final overdetermination,” Commun. Pure Appl. Math., 44, 185–209 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  30. V. M. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, New York (2006).

    MATH  Google Scholar 

  31. A. D. Iskenderov and R. G. Tagirov, “Inverse problem of the search for right-hand sides of evolutionary equations in Banach spaces,” Probl. Prikl. Mat. Kibern., 1, 51–55 (1979).

    Google Scholar 

  32. S. I. Kabanikhin, Inverse and Ill-Posed Problems [in Russian], Novosibirsk (2009).

  33. M. V. Keldysh, “On eigenvalues and eigenfunctions of some classes of non-self-adjoint equations,” Dokl. Akad. Nauk SSSR, 77, No. 1, 11–14 (1951).

    Google Scholar 

  34. M. V. Keldysh, “On the completeness of eigenfunctions of some classes of non-self-adjoint linear operators,” Usp. Mat. Nauk, 26, No. 4 (160), 15–41 (1971).

    MATH  Google Scholar 

  35. A. Khaidarov, “On one class of inverse problems for elliptic equations,” Dokl. Akad. Nauk SSSR, 277, No. 6, 1335–1337 (1984).

    MathSciNet  Google Scholar 

  36. A. B. Kostin, “Solvability of one moment problem and its relationship with a parabolic inverse problem,” Vestn. Mosk. Univ. Ser. 15. Vychisl. Mat. Kibern., No 1, 28–33 (1995).

  37. A. B. Kostin, “The basis property of one system of functions associated with an inverse problem,” in: Algorithmic Analysis of Ill-Posed Problems [in Russian], Ekaterinburg (1998), pp. 135–136.

  38. A. B. Kostin, “The basis property of one system of functions associated with an inverse problem of recovering the source,” Differ. Uravn., 44, No. 2, 246–256 (2008).

    MathSciNet  Google Scholar 

  39. A. B. Kostin, “The inverse problem of recovering the source in a parabolic equation under a condition of nonlocal observation,” Mat. Sb., 204, No. 10, 3–46 (2013).

    Article  MATH  Google Scholar 

  40. A. B. Kostin, “On complex eigenvalues of elliptic operators and an example of nonunique solution of an inverse problem,” Dokl. Ross. Akad. Nauk, 453, No. 2, 138–141 (2013).

    MATH  Google Scholar 

  41. A. B. Kostin, “Counterexamples in inverse problems for parabolic, elliptic, and hyperbolic equations,” Zh. Vychisl. Mat. Mat. Fiz., 54, No. 5, 779–792 (2014).

    MathSciNet  MATH  Google Scholar 

  42. S. G. Krein, Linear Differential Equations in Banach Spaces [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  43. A. S. Leonov, Solving of Ill-Posed Inverse Problems. An Essay of Theory, Practical Algorithms, and Demonstrations in MATLAB [in Russian], Librokom, Moscow (2010).

    Google Scholar 

  44. V. B. Lidskii, “Conditions for completeness of a system of root subspaces of non-self-adjoint operators with discrete spectrum,” Tr. Mosk. Mat. Obshch., 8, 83–120 (1959).

    Google Scholar 

  45. V. B. Lidskii, “The Fourier series expansion in terms of principal functions of a non-self-adjoint elliptic operator,” Mat. Sb. (N.S.), 57 (99), No. 2, 137–150 (1962).

    Google Scholar 

  46. V. B. Lidskii, “Summability of series in terms of principal vectors of non-self-adjoint operators,” Tr. Mosk. Mat. Obshch., 11, 3–35 (1962).

    Google Scholar 

  47. V. B. Lidskii, “An estimate for the resolvent of an elliptic differential operator,” Funkts. Anal. Prilozh., 10, No. 4, 89–90 (1976).

    MathSciNet  Google Scholar 

  48. A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils [in Russian], Ştiinţa, Chişinău (1986).

    Google Scholar 

  49. A. I. Markushevich, Theory of Analytic Functions [in Russian], Vol. 1, Nauka, Moscow (1967).

    Google Scholar 

  50. P. S. Novikov, “Uniqueness of solutions of inverse problems of the potential theory,” Dokl. Akad. Nauk SSSR, 18, No. 3, 165–168 (1938).

    Google Scholar 

  51. D. G. Orlovskii, “On one inverse problem for a differential equation in a Banach space,” Differ. Uravn., 25, No. 6, 1000–1009 (1989).

    Google Scholar 

  52. D. G. Orlovskii, “On a problem of determining the parameter of an evolution equation,” Differ. Uravn., 26, No. 9, 1614–1621 (1990).

    MathSciNet  Google Scholar 

  53. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York (1983).

    Book  MATH  Google Scholar 

  54. V. V. Prasolov, Polynomials [in Russian], MCCME, Moscow (1999).

    Google Scholar 

  55. A. I. Prilepko, “Inverse problems of potential theory,” Differ. Uravn., 3, 30–44 (1967).

    MathSciNet  MATH  Google Scholar 

  56. A. I. Prilepko, “Inverse problems of potential theory (elliptic, parabolic, hyperbolic, and transport equations),” Mat. Zametki, 14, No. 5, 755–767 (1973).

    MathSciNet  Google Scholar 

  57. A. I. Prilepko, “Selected questions of inverse problems of mathematical physics,” in: Conditionally Well-Posed Problems of Mathematical Physics and Analysis [in Russian], Nauka, Novosibirsk (1992), pp. 51–63.

  58. A. I. Prilepko and A. B. Kostin, “On inverse problems of determining coefficients in parabolic equations. I,” Sib. Mat. Zh., 33, No. 3, 146–155 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  59. A. I. Prilepko and A. B. Kostin, “On certain inverse problems for parabolic equations with final and integral observation,” Mat. Sb., 183, No. 4, 49–68 (1992).

    MATH  Google Scholar 

  60. A. I. Prilepko and A. B. Kostin, “Estimation of the spectral radius of an operator and the solvability of inverse problems for evolution equations,” Mat. Zametki, 53, No. 1, 89–94 (1993).

    MathSciNet  MATH  Google Scholar 

  61. A. I. Prilepko, D. G. Orlovsky, and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York (2000).

    MATH  Google Scholar 

  62. A. I. Prilepko and V. V. Solov’ev, “Solvability theorems and the Rothe method in inverse problems for an equation of parabolic type. II,” Differ. Uravn., 23, No. 11, 1971–1980, (1987).

    MathSciNet  Google Scholar 

  63. A. I. Prilepko and V. V. Solov’ev, “On the solvability of inverse boundary-value problems for the determining the coefficient of the lowest derivative in a parabolic equation,” Differ. Uravn., 23, No. 1, 136–143 (1987).

    Google Scholar 

  64. A. I. Prilepko and I. V. Tikhonov, “Recovering of an inhomogeneous term in an abstract evolutionary equation,” Izv. Ross. Akad. Nauk, Ser. Mat., 58, No. 2, 167–188 (1994).

    Google Scholar 

  65. A. I. Prilepko and I. V. Tikhonov, “An inverse problem with final overdetermination for an abstract evolutionary equation in an ordered Banach space,” Funkts. Anal. Prilozh., 27, No. 1, 81–83 (1993).

    MATH  Google Scholar 

  66. A. M. Sedletskii, Classes of Analytic Fourier Transforms and Exponential Approximations [in Russian], Fizmatlit, Moscow (2005).

    MATH  Google Scholar 

  67. A. A. Shkalikov, “On the basis property of root vectors of a perturbed self-adjoint operator,” in: Theory of Functions and Differential Equations [in Russian], Tr. Mat. Inst. Steklova, 269, 290–303 (2010).

  68. V. I. Smirnov, A Course of Higher Mathematics [in Russian], Vol. 4, Part 2, Nauka, Moscow (1981).

    Google Scholar 

  69. V. V. Solov’ev, “Inverse problems for elliptic equations in space. II,” Differ. Uravn., 47, No. 5, 714–723 (2011).

    MathSciNet  Google Scholar 

  70. A. N. Tikhonov and V. Ya. Arsenin, Methods of Solution of Ill-Posed Problems [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  71. I. V. Tikhonov, “Nonconservation of the completeness property of orthogonal systems under multiplication by positive functions,” in: Proc. XXVI Voronezh Winter Mathematical School [in Russian], Voronezh State Univ., Voronezh (1994), p. 89.

  72. I. V. Tikhonov, “Monotonicity in inverse problems for abstract differential equations,” Integral Transforms Special Func. [in Russian], 2, No. 1, 119–128 (2001).

    Google Scholar 

  73. I. V. Tikhonov, Inverse nonlocal and boundary-value problems for evolutionary equations [in Russian], Doctoral thesis, Moscow (2008).

    Google Scholar 

  74. I. V. Tikhonov and Yu. S. Eidelman, “Uniqueness criterion in an inverse problem for an abstract differential equation with nonstationary inhomogeneous term,” Mat. Zametki, 77, No. 2, 273–290 (2005).

    Article  MathSciNet  Google Scholar 

  75. A. Tychonoff (Tikhonov), “Théorèmes d’unicité pour l’équation de la chaleur,” Mat. Sb., 42, No. 2, 199–216 (1935).

    MATH  Google Scholar 

  76. G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge (1944).

    MATH  Google Scholar 

  77. A. G. Yagola, Inverse Problems and Methods for Their Solution. Applications to Geophysics [in Russian], Binom, Moscow (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Kostin.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya Tematicheskie Obzory, Vol. 133, Functional Analysis, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostin, A.B. Criteria of the Uniqueness of Solutions and Well-Posedness of Inverse Source Problems. J Math Sci 230, 907–949 (2018). https://doi.org/10.1007/s10958-018-3799-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-3799-8

Keywords and phrases

AMS Subject Classification

Navigation