Journal of Mathematical Sciences

, Volume 230, Issue 6, pp 907–949 | Cite as

Criteria of the Uniqueness of Solutions and Well-Posedness of Inverse Source Problems

  • A. B. Kostin


In this paper, we study the relation between the well-posedness of the inverse problem of the recovering the source in an abstract differential equation and the basis property of a certain class of function systems in a Hilbert space. As a consequence, based on the results concerning the well-posedness of inverse problems, we obtain the Riesz basis property and—under certain additional conditions—the Bari basis property of such systems.

Keywords and phrases

inverse problem equation in Hilbert space final observation well-posedness completeness Riesz basis property 

AMS Subject Classification

35P05 35R30 47F05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    S. Agmon, “On eigenfunctions and eigenvalues of general elliptic boundary-value problems,” Commun. Pure Appl. Math., 15, 119–147 (1962).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    S. Agmon, “On kernels, eigenvalues and eigenfunctions of operators related to elliptic problems,” Commun. Pure Appl. Math., 18, 627–663 (1965).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, New York (1965).zbMATHGoogle Scholar
  4. 4.
    M. S. Agranovich, “On series with respect to root vectors of operators associated with forms having symmetric principal part,” Funkts. Anal. Prilozh., 28, No. 3, 1–21 (1994).zbMATHGoogle Scholar
  5. 5.
    M. S. Agranovich, “Spectral problems for second-order strongly elliptic systems in smooth and nonsmooth domains,” Usp. Mat. Nauk, 57, No. 5 (347), 3–78 (2002).CrossRefzbMATHGoogle Scholar
  6. 6.
    M. S. Agranovich, A Course in the Theory of Linear Operators [in Russian], Moscow (2005);
  7. 7.
    N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Spaces [in Russian], Nauka, Moscow (1966).zbMATHGoogle Scholar
  8. 8.
    A. G. Aslanyan and V. B. Lidskii, “Spectrum of an elliptic equation,” Mat. Zametki, 7, No. 4, 495–502 (1970).MathSciNetGoogle Scholar
  9. 9.
    S. Banach, Theory of Linear Operations, North-Holland, Amsterdam (1987).zbMATHGoogle Scholar
  10. 10.
    N. Bary, “Sur la stabilité de certaines propriétés des systèmes orthogonaux (première partie),” Mat. Sb., 12 (54), No. 1, 3–27 (1943).MathSciNetzbMATHGoogle Scholar
  11. 11.
    N. Bary, “Sur les systèmes complets de fonctions orthogonales,” Mat. Sb., 14 (56), Nos. 1-2, 51–108 (1944).MathSciNetzbMATHGoogle Scholar
  12. 12.
    N. Bary, “Biorthogonal systems and bases in Hilbert spaces,” Uch. Zap. Mosk. Univ. Mat., IV (148), 69–107 (1951).MathSciNetGoogle Scholar
  13. 13.
    F. Browder, “On the eigenfunctions and eigenvalues of the general linear elliptic differential operator,” Proc. Natl. Acad. Sci. U.S.A., 39, 433–439 (1953).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    F. Browder, “On the spectral theory of strongly elliptic differential operators,” Proc. Natl. Acad. Sci. U.S.A., 45, 1423–1431 (1959).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Yu. S. Eidelman, “Uniqueness of solutions of an inverse problem for a differential equation in a Banach space,” Differ. Uravn., 23, No. 9, 1647–1649 (1987).MathSciNetGoogle Scholar
  16. 16.
    Yu. S. Eidelman, “Solvability conditions for inverse problems for evolutionary equations,” Dokl. Akad. Nauk USSR, Ser. A, 7, 28–31 (1990).Google Scholar
  17. 17.
    Yu. S. Eidelman, “Inverse problems for parabolic and elliptic differential-operator equations,” Ukr. Mat. Zh., 45, No. 1, 120–127 (1993).MathSciNetGoogle Scholar
  18. 18.
    Yu. S. Eidelman, “An inverse problem for a second-order differential equation in a Banach space,” Abstr. Appl. Anal., 9, No. 12, 997–1005 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Functional Analysis [in Russian], S. G. Krein, ed., Nauka, Moscow (1964).Google Scholar
  20. 20.
    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin (1983).CrossRefzbMATHGoogle Scholar
  21. 21.
    I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Am. Math. Soc., Providence, Rhode Island (1969).Google Scholar
  22. 22.
    L. Hörmander, The Analysis of Linear Partial Differential Operators, I. Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin–Heidelberg (2003).zbMATHGoogle Scholar
  23. 23.
    V. A. Il’in, “On convergence of expansions in eigenfunctions of the Laplace operator,” Usp. Mat. Nauk, 13, No. 1 (79), 87–180 (1958).MathSciNetGoogle Scholar
  24. 24.
    V. A. Il’in, Spectral Theory of Differential Operators. Self-Adjoint Differential Operators [in Russian], Nauka, Moscow (1991).Google Scholar
  25. 25.
    V. A. Ilin and L. V. Kritskov, “Properties of spectral expansions corresponding to non-selfadjoint differential operators,” J. Math. Sci., 116, No. 5, 3489–3550 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    V. A. Il’in and E. I. Moiseev, “The system of root functions of the directional derivative problem is not a basis,” Differ. Uravn., 30, No. 1, 128–143 (1994).zbMATHGoogle Scholar
  27. 27.
    V. A. Il’in and I. A. Shishmarev, “On the equivalence of the systems of generalized and classical eigenfunctions,” Izv. Akad. Nauk SSSR Ser. Mat., 24, No. 5, 757–774 (1960).MathSciNetGoogle Scholar
  28. 28.
    V. M. Isakov, “On one class of inverse problems for parabolic equations,” Dokl. Akad. Nauk SSSR, 263, No. 6, 1296–1299 (1982).MathSciNetGoogle Scholar
  29. 29.
    V. M. Isakov, “Inverse parabolic problems with the final overdetermination,” Commun. Pure Appl. Math., 44, 185–209 (1991).MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    V. M. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, New York (2006).zbMATHGoogle Scholar
  31. 31.
    A. D. Iskenderov and R. G. Tagirov, “Inverse problem of the search for right-hand sides of evolutionary equations in Banach spaces,” Probl. Prikl. Mat. Kibern., 1, 51–55 (1979).Google Scholar
  32. 32.
    S. I. Kabanikhin, Inverse and Ill-Posed Problems [in Russian], Novosibirsk (2009).Google Scholar
  33. 33.
    M. V. Keldysh, “On eigenvalues and eigenfunctions of some classes of non-self-adjoint equations,” Dokl. Akad. Nauk SSSR, 77, No. 1, 11–14 (1951).Google Scholar
  34. 34.
    M. V. Keldysh, “On the completeness of eigenfunctions of some classes of non-self-adjoint linear operators,” Usp. Mat. Nauk, 26, No. 4 (160), 15–41 (1971).zbMATHGoogle Scholar
  35. 35.
    A. Khaidarov, “On one class of inverse problems for elliptic equations,” Dokl. Akad. Nauk SSSR, 277, No. 6, 1335–1337 (1984).MathSciNetGoogle Scholar
  36. 36.
    A. B. Kostin, “Solvability of one moment problem and its relationship with a parabolic inverse problem,” Vestn. Mosk. Univ. Ser. 15. Vychisl. Mat. Kibern., No 1, 28–33 (1995).Google Scholar
  37. 37.
    A. B. Kostin, “The basis property of one system of functions associated with an inverse problem,” in: Algorithmic Analysis of Ill-Posed Problems [in Russian], Ekaterinburg (1998), pp. 135–136.Google Scholar
  38. 38.
    A. B. Kostin, “The basis property of one system of functions associated with an inverse problem of recovering the source,” Differ. Uravn., 44, No. 2, 246–256 (2008).MathSciNetGoogle Scholar
  39. 39.
    A. B. Kostin, “The inverse problem of recovering the source in a parabolic equation under a condition of nonlocal observation,” Mat. Sb., 204, No. 10, 3–46 (2013).CrossRefzbMATHGoogle Scholar
  40. 40.
    A. B. Kostin, “On complex eigenvalues of elliptic operators and an example of nonunique solution of an inverse problem,” Dokl. Ross. Akad. Nauk, 453, No. 2, 138–141 (2013).zbMATHGoogle Scholar
  41. 41.
    A. B. Kostin, “Counterexamples in inverse problems for parabolic, elliptic, and hyperbolic equations,” Zh. Vychisl. Mat. Mat. Fiz., 54, No. 5, 779–792 (2014).MathSciNetzbMATHGoogle Scholar
  42. 42.
    S. G. Krein, Linear Differential Equations in Banach Spaces [in Russian], Nauka, Moscow (1967).Google Scholar
  43. 43.
    A. S. Leonov, Solving of Ill-Posed Inverse Problems. An Essay of Theory, Practical Algorithms, and Demonstrations in MATLAB [in Russian], Librokom, Moscow (2010).Google Scholar
  44. 44.
    V. B. Lidskii, “Conditions for completeness of a system of root subspaces of non-self-adjoint operators with discrete spectrum,” Tr. Mosk. Mat. Obshch., 8, 83–120 (1959).Google Scholar
  45. 45.
    V. B. Lidskii, “The Fourier series expansion in terms of principal functions of a non-self-adjoint elliptic operator,” Mat. Sb. (N.S.), 57 (99), No. 2, 137–150 (1962).Google Scholar
  46. 46.
    V. B. Lidskii, “Summability of series in terms of principal vectors of non-self-adjoint operators,” Tr. Mosk. Mat. Obshch., 11, 3–35 (1962).Google Scholar
  47. 47.
    V. B. Lidskii, “An estimate for the resolvent of an elliptic differential operator,” Funkts. Anal. Prilozh., 10, No. 4, 89–90 (1976).MathSciNetGoogle Scholar
  48. 48.
    A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils [in Russian], Ştiinţa, Chişinău (1986).Google Scholar
  49. 49.
    A. I. Markushevich, Theory of Analytic Functions [in Russian], Vol. 1, Nauka, Moscow (1967).Google Scholar
  50. 50.
    P. S. Novikov, “Uniqueness of solutions of inverse problems of the potential theory,” Dokl. Akad. Nauk SSSR, 18, No. 3, 165–168 (1938).Google Scholar
  51. 51.
    D. G. Orlovskii, “On one inverse problem for a differential equation in a Banach space,” Differ. Uravn., 25, No. 6, 1000–1009 (1989).Google Scholar
  52. 52.
    D. G. Orlovskii, “On a problem of determining the parameter of an evolution equation,” Differ. Uravn., 26, No. 9, 1614–1621 (1990).MathSciNetGoogle Scholar
  53. 53.
    A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York (1983).CrossRefzbMATHGoogle Scholar
  54. 54.
    V. V. Prasolov, Polynomials [in Russian], MCCME, Moscow (1999).Google Scholar
  55. 55.
    A. I. Prilepko, “Inverse problems of potential theory,” Differ. Uravn., 3, 30–44 (1967).MathSciNetzbMATHGoogle Scholar
  56. 56.
    A. I. Prilepko, “Inverse problems of potential theory (elliptic, parabolic, hyperbolic, and transport equations),” Mat. Zametki, 14, No. 5, 755–767 (1973).MathSciNetGoogle Scholar
  57. 57.
    A. I. Prilepko, “Selected questions of inverse problems of mathematical physics,” in: Conditionally Well-Posed Problems of Mathematical Physics and Analysis [in Russian], Nauka, Novosibirsk (1992), pp. 51–63.Google Scholar
  58. 58.
    A. I. Prilepko and A. B. Kostin, “On inverse problems of determining coefficients in parabolic equations. I,” Sib. Mat. Zh., 33, No. 3, 146–155 (1992).MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    A. I. Prilepko and A. B. Kostin, “On certain inverse problems for parabolic equations with final and integral observation,” Mat. Sb., 183, No. 4, 49–68 (1992).zbMATHGoogle Scholar
  60. 60.
    A. I. Prilepko and A. B. Kostin, “Estimation of the spectral radius of an operator and the solvability of inverse problems for evolution equations,” Mat. Zametki, 53, No. 1, 89–94 (1993).MathSciNetzbMATHGoogle Scholar
  61. 61.
    A. I. Prilepko, D. G. Orlovsky, and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York (2000).zbMATHGoogle Scholar
  62. 62.
    A. I. Prilepko and V. V. Solov’ev, “Solvability theorems and the Rothe method in inverse problems for an equation of parabolic type. II,” Differ. Uravn., 23, No. 11, 1971–1980, (1987).MathSciNetGoogle Scholar
  63. 63.
    A. I. Prilepko and V. V. Solov’ev, “On the solvability of inverse boundary-value problems for the determining the coefficient of the lowest derivative in a parabolic equation,” Differ. Uravn., 23, No. 1, 136–143 (1987).Google Scholar
  64. 64.
    A. I. Prilepko and I. V. Tikhonov, “Recovering of an inhomogeneous term in an abstract evolutionary equation,” Izv. Ross. Akad. Nauk, Ser. Mat., 58, No. 2, 167–188 (1994).Google Scholar
  65. 65.
    A. I. Prilepko and I. V. Tikhonov, “An inverse problem with final overdetermination for an abstract evolutionary equation in an ordered Banach space,” Funkts. Anal. Prilozh., 27, No. 1, 81–83 (1993).zbMATHGoogle Scholar
  66. 66.
    A. M. Sedletskii, Classes of Analytic Fourier Transforms and Exponential Approximations [in Russian], Fizmatlit, Moscow (2005).zbMATHGoogle Scholar
  67. 67.
    A. A. Shkalikov, “On the basis property of root vectors of a perturbed self-adjoint operator,” in: Theory of Functions and Differential Equations [in Russian], Tr. Mat. Inst. Steklova, 269, 290–303 (2010).Google Scholar
  68. 68.
    V. I. Smirnov, A Course of Higher Mathematics [in Russian], Vol. 4, Part 2, Nauka, Moscow (1981).Google Scholar
  69. 69.
    V. V. Solov’ev, “Inverse problems for elliptic equations in space. II,” Differ. Uravn., 47, No. 5, 714–723 (2011).MathSciNetGoogle Scholar
  70. 70.
    A. N. Tikhonov and V. Ya. Arsenin, Methods of Solution of Ill-Posed Problems [in Russian], Nauka, Moscow (1986).Google Scholar
  71. 71.
    I. V. Tikhonov, “Nonconservation of the completeness property of orthogonal systems under multiplication by positive functions,” in: Proc. XXVI Voronezh Winter Mathematical School [in Russian], Voronezh State Univ., Voronezh (1994), p. 89.Google Scholar
  72. 72.
    I. V. Tikhonov, “Monotonicity in inverse problems for abstract differential equations,” Integral Transforms Special Func. [in Russian], 2, No. 1, 119–128 (2001).Google Scholar
  73. 73.
    I. V. Tikhonov, Inverse nonlocal and boundary-value problems for evolutionary equations [in Russian], Doctoral thesis, Moscow (2008).Google Scholar
  74. 74.
    I. V. Tikhonov and Yu. S. Eidelman, “Uniqueness criterion in an inverse problem for an abstract differential equation with nonstationary inhomogeneous term,” Mat. Zametki, 77, No. 2, 273–290 (2005).MathSciNetCrossRefGoogle Scholar
  75. 75.
    A. Tychonoff (Tikhonov), “Théorèmes d’unicité pour l’équation de la chaleur,” Mat. Sb., 42, No. 2, 199–216 (1935).zbMATHGoogle Scholar
  76. 76.
    G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge (1944).zbMATHGoogle Scholar
  77. 77.
    A. G. Yagola, Inverse Problems and Methods for Their Solution. Applications to Geophysics [in Russian], Binom, Moscow (2014).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations