# On Approximation of Coefficient Inverse Problems for Differential Equations in Functional Spaces

Article

First Online:

- 3 Downloads

## Abstract

This paper is devoted to the theory of approximation of coefficient inverse problems for differential equations of parabolic, elliptic, and hyperbolic types in functional spaces. We present general statements of problems and their approximations and review results obtained earlier in the literature.

## Keywords and phrases

abstract differential equation abstract hyperbolic problem abstract elliptic problem abstract parabolic problem*C*

_{0}-semigroup Banach space semidiscretization inverse overdetermined problem finite-difference scheme discrete semigroup

## AMS Subject Classification

35Nxx 65Jxx 65Nxx 35Jxx 47Dxx## Preview

Unable to display preview. Download preview PDF.

## Notes

## References

- 1.K. R. Aida-zade and A. B. Rahimov, “An approach to numerical solution of some inverse problems for parabolic equations,”
*Inverse Probl. Sci. Eng.*,**22**, No. 1, 96–111 (2014).MathSciNetMATHGoogle Scholar - 2.K. R. Aida-zade and A. B. Ragimov, “On the solution of a coefficient inverse problem,”
*Sib. Zh. Ind. Mat.*,**16**, No. 2, 3–13 (2013).MathSciNetGoogle Scholar - 3.A. Ya. Akhundov and A. I. Gasanova, “On an inverse problem for a semilinear parabolic equation in the case of boundary value problem with nonlinear boundary condition,”
*Azerb. J. Math.*,**4**, No. 2, 10–15 (2014).MathSciNetMATHGoogle Scholar - 4.F. T. Akyildiz, Salih Tatar, and Suleyman Ulusoy, “Existence and uniqueness for a nonlinear inverse reaction-diffusion problem with a nonlinear source in higher dimensions,”
*Math. Methods Appl. Sci.*,**36**, No. 17, 2397–2402 (2013).MathSciNetMATHGoogle Scholar - 5.Yu. E. Anikonov and M. V. Neshchadim, “Analytical methods of the theory of inverse problems for parabolic equations,”
*J. Math. Sci.*,**195**, No. 6, 754–770 (2013).MathSciNetGoogle Scholar - 6.Yu. E. Anikonov, J. Cheng, and M. Yamamoto, “A uniqueness result in an inverse hyperbolic problem with analyticity,”
*Eur. J. Appl. Math.*,**15**, No. 5, 533–543 (2004).MathSciNetMATHGoogle Scholar - 7.Yu. E. Anikonov and M. Yamamoto, “Analytic representations of solutions to inverse problems for nonlinear equations,”
*J. Inverse Ill-Posed Probl.*,**17**, No. 7, 695–701 (2009).MathSciNetMATHGoogle Scholar - 8.A. Ashyralyev and F. Ozesenli Tetikoglu, “A note on Bitsadze–Samarskii type nonlocal boundary value problems: Well-posedness,”
*Numer. Funct. Anal. Optim.*,**34**, No. 9, 939–975 (2013).MathSciNetMATHGoogle Scholar - 9.A. Ashyralyev and E. Ozturk, “On Bitsadze–Samarskii type nonlocal boundary value problems for elliptic differential and difference equations: Well-posedness,”
*Appl. Math. Comput*,**219**, No. 3. 1093–1107 (2013).MathSciNetMATHGoogle Scholar - 10.A. Ashyralyev and P. E. Sobolevskii,
*New Difference Schemes for Partial Differential Equations*, Operator Theory Advances and Applications, Birkhäuser Verlag, Basel, Boston, Berlin (2004).MATHGoogle Scholar - 11.A. Ashyralyev and P. E. Sobolevskii, “A note on the difference schemes for hyperbolic equations,”
*Abstr. Appl. Anal.*,**6**, No. 2, 63–70 (2001).MathSciNetMATHGoogle Scholar - 12.A. Ashyralyev, C. Cuevas, and S. Piskarev, “On well-posedness of difference schemes for abstract elliptic equations in
*L*^{p}([0*, T*];*E*) spaces,”*Numer. Funct. Anal. Optim.*, Vol. 29, Issue 1&2, 43–65 (2008).MathSciNetMATHGoogle Scholar - 13.C. Ashyralyyev and M. Dedeturk, “Approximation of the inverse elliptic problem with mixed boundary value conditions and overdetermination,” Preprint (2014).Google Scholar
- 14.C. Ashyralyyev and M. Dedeturk, “Approximate solution of inverse problem for elliptic equation with overdetermination,”
*Abstr. Appl. Anal.*, Art. ID 548017 (2013), 11 pp.Google Scholar - 15.F. Awawdeh, “Perturbation method for abstract second-order inverse problems,”
*Nonlinear Anal.*,**72**, No. 3-4, 1379–1386 (2010).MathSciNetMATHGoogle Scholar - 16.N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov,
*Numerical Methods*[in Russian], Nauka, Moscow (1987).MATHGoogle Scholar - 17.G. Bal and G. Uhlmann, “Reconstruction of coefficients in scalar second-order elliptic equations from knowledge of their solutions,”
*Commun. Pure Appl. Math.*,**66**, No. 10, 1629–1652 (2013).MathSciNetMATHGoogle Scholar - 18.G. Bal, E. Bonnetier, F. Monard, and F. Triki, “Inverse diffusion from knowledge of power densities,”
*Inverse Probl. Imag.*,**7**, No. 2, 353–375 (2013).MathSciNetMATHGoogle Scholar - 19.V. Barbu and N. H. Pavel, “On the invertibility of
*I*± exp(*−tA*),*t*> 0, with*A*maximal monotone,” In:*World Congress of Nonlinear Analysts ’92*, Vols. I–IV, de Gruyter, Berlin (1996), pp. 2231–2237.Google Scholar - 20.L. Beilina, Nguyen Trung Thanh, M. V. Klibanov, and M. A. Fiddy, “Reconstruction from blind experimental data for an inverse problem for a hyperbolic equation,”
*Inverse Probl.*,**30**, No. 2, 025002, (2014) 24 pp.MathSciNetMATHGoogle Scholar - 21.M. Bellassoued and M. Yamamoto, “Inverse source problem for a transmission problem for a parabolic equation,”
*J. Inverse Ill-Posed Probl.*,**14**, No. 1, 47–56 (2006).MathSciNetMATHGoogle Scholar - 22.M. Bellassoued and M. Yamamoto, “Determination of a coefficient in the wave equation with a single measurement,”
*Appl. Anal.*,**87**, No. 8, 901–920 (2008).MathSciNetMATHGoogle Scholar - 23.M. Bellassoued, D. Jellali, and M. Yamamoto, “Lipschitz stability for a hyperbolic inverse problem by finite local boundary data,”
*Appl. Anal.*,**85**, No. 10, 1219–1243 (2006).MathSciNetMATHGoogle Scholar - 24.M. Bellassoued, D. Jellali, and M. Yamamoto, “Stability estimate for the hyperbolic inverse boundary value problem by local Dirichlet-to-Neumann map,”
*J. Math. Anal. Appl.*,**343**, No. 2, 1036–1046 (2008).MathSciNetMATHGoogle Scholar - 25.Yu. Ya. Belov, “Inverse problems for parabolic equations,”
*J. Inverse Ill-Posed Probl.*,**1**, No. 4, 283–305 (1993).MathSciNetMATHGoogle Scholar - 26.A. Benabdallah, M. Cristofol, P. Gaitan, and M. Yamamoto, “Inverse problem for a parabolic system with two components by measurements of one component,”
*Appl. Anal.*,**88**, No. 5, 683–709 (2009).MathSciNetMATHGoogle Scholar - 27.I. B. Bereznyts’ka, “Inverse problem of determination of the source in a general parabolic equation,”
*Mat. Stud.*,**18**, No. 2, 169–176 (2002).MathSciNetMATHGoogle Scholar - 28.W.-J. Beyn and S. Piskarev, “Shadowing for discrete approximations of abstract parabolic equations,”
*Discrete Contin. Dynam. Syst. Ser. B*, Vol. 10, No. 1, 19–42 (2008).MathSciNetMATHGoogle Scholar - 29.L. F. Borisova, “Inverse problem for parabolic high-order equations,”
*J. Inverse Ill-Posed Probl.*,**16**, No. 3, 209–220 (2008).MathSciNetMATHGoogle Scholar - 30.G. Bruckner and M. Yamamoto, “Determination of point wave sources by pointwise observations: Stability and reconstruction,”
*Inverse Probl.*,**16**, No. 3, 723–748 (2000).MathSciNetMATHGoogle Scholar - 31.A. L. Bukhgeim, J. Cheng, and M. Yamamoto, “Conditional stability in an inverse problem of determining a non-smooth boundary,”
*J. Math. Anal. Appl.*,**242**, No. 1, 57–74 (2000).MathSciNetMATHGoogle Scholar - 32.J. Cheng and M. Yamamoto, “The global uniqueness for determining two convection coefficients from Dirichlet to Neumann map in two dimensions,”
*Inverse Probl.*,**16**, No. 3, L25–L30 (2000).MathSciNetMATHGoogle Scholar - 33.J. Cheng and M. Yamamoto, “Determination of two convection coefficients from Dirichlet to Neumann map in the two-dimensional case,”
*SIAM J. Math. Anal.*,**35**, No. 6, 1371–1393 (2004).MathSciNetMATHGoogle Scholar - 34.J. Cheng and M. Yamamoto, “Identification of convection term in a parabolic equation with a single measurement,”
*Nonlinear Anal., Ser. A.*,**50**, No. 2, 163–171 (2002).MathSciNetMATHGoogle Scholar - 35.J. Cheng, Li Peng, and M. Yamamoto, “The conditional stability in line unique continuation for a wave equation and an inverse wave source problem,”
*Inverse Probl.*,**21**, No. 6, 1993–2007 (2005).MathSciNetMATHGoogle Scholar - 36.J. Cheng, Y. C. Hon, and M. Yamamoto, “Conditional stability for an inverse Neumann boundary problem,”
*Appl. Anal.*,**83**, No. 1, 49–62 (2004).MathSciNetMATHGoogle Scholar - 37.J. Cheng, G. Ding, and M. Yamamoto, “Uniqueness along a line for an inverse wave source problem,”
*Commun. Partial Differ. Equ.*,**27**, No. 9-10, 2055–2069 (2002).MathSciNetMATHGoogle Scholar - 38.W. Chojnacki, “Group representations of bounded cosine functions,”
*J. Rein. Angew. Math.*,**478**, 61–84 (1996).MathSciNetMATHGoogle Scholar - 39.W. Chojnacki, “On group decompositions of bounded cosine sequences,”
*Stud. Math.*,**181**, No. 1, 61–85 (2007).MathSciNetMATHGoogle Scholar - 40.M. Choulli and M. Yamamoto, “Uniqueness and stability in determining the heat radiative coefficient, the initial temperature and a boundary coefficient in a parabolic equation,”
*Nonlinear Anal.*,**69**, No. 11, 3983–3998 (2008).MathSciNetMATHGoogle Scholar - 41.M. Choulli and M. Yamamoto, “Some stability estimates in determining sources and coefficients,”
*J. Inverse Ill-Posed Probl.*,**14**, No. 4, 355–373 (2006).MathSciNetMATHGoogle Scholar - 42.M. Choulli and M. Yamamoto, “Generic well-posedness of a linear inverse parabolic problem with diffusion parameters,”
*J. Inverse Ill-Posed Probl.*,**7**, No. 3, 241–254 (1999).MathSciNetMATHGoogle Scholar - 43.D.-K. Chyan, S.-Y. Shaw, and S. Piskarev, “On maximal regularity and semivariation of cosine operator functions,”
*J. London Math. Soc. (2)*,**59**, No. 3, 1023–1032 (1999).MathSciNetMATHGoogle Scholar - 44.R. Cipolatti and M. Yamamoto, “An inverse problem for a wave equation with arbitrary initial values and a finite time of observations,”
*Inverse Probl.*,**27**, No. 9, 095006 (2011), 15 pp.MathSciNetMATHGoogle Scholar - 45.P. Clement, H. J. A. M. Heijmans, S. Angenent, et al.,
*One-Parameter Semigroups*, CWIMonographs, 5. North-Holland Publishing Co., Amsterdam (1987).MATHGoogle Scholar - 46.A. M. Denisov, “The inverse problem for the diffusion equation with overdetermination in the form of external volume potential,”
*Zh. Vychisl. Mat. Mat. Fiz.*,**51**, No. 9, 1695–1702 (2011); translation in*Comput. Math. Math. Phys.*,**51**, No. 9, 1588–1595 (2011).Google Scholar - 47.A. M. Denisov, “Inverse problems for a quasilinear hyperbolic equation in the case of a moving observation point,”
*Differ. Uravn.*,**45**, No. 11, 1543–1553 (2009); translation in*Differ. Equ.*,**45**, No. 11, 1577–1587 (2009).Google Scholar - 48.A. M. Denisov and S. I. Solov’eva, “Inverse problem for the diffusion equation in the case of spherical symmetry,”
*Comput. Math. Math. Phys.*,**53**, No. 11, 1607–1613 (2013).MathSciNetMATHGoogle Scholar - 49.S. D’haeyer, B. T. Johansson, and M. Slodichka, “Reconstruction of a spacewise-dependent heat source in a time-dependent heat diffusion process,”
*IMA J. Appl. Math.*,**79**, No. 1, 33–53 (2014).MathSciNetMATHGoogle Scholar - 50.P. DuChateau, “An adjoint method for proving identifiability of coefficients in parabolic equations,”
*J. Inverse Ill-Posed Probl.*,**21**, No. 5, 639–663 (2013).MathSciNetMATHGoogle Scholar - 51.B. Eberhardt and G. Greiner, “Baillon’s theorem on maximal regularity,”
*Acta Appl. Math.*,**27**, 47–54 (1992).MathSciNetMATHGoogle Scholar - 52.H. Egger, J.-F. Pietschmann, and M. Schlottbom, “Simultaneous identification of diffusion and absorption coefficients in a quasilinear elliptic problem,”
*Inverse Probl.*,**30**, No. 3, 035009 (2014), 8 pp.MathSciNetMATHGoogle Scholar - 53.H. O. Fattorini,
*Second-Order Linear Differential Equations in Banach Spaces*, North-Holland, Amsterdam (1985).MATHGoogle Scholar - 54.U. M. Fedus, “An inverse problem for determining the heat capacity coefficient,”
*Mat. Stud.*,**25**, No. 2, 126–140 (2006).MathSciNetMATHGoogle Scholar - 55.A. Fraguela, J. A. Infante, A. M. Ramos, and J. M. Rey, “A uniqueness result for the identification of a time-dependent diffusion coefficient,”
*Inverse Probl.*,**29**, No. 12, 125009 (2013), 17 pp.MathSciNetMATHGoogle Scholar - 56.H. Fujita and A. Mizutani, “On the finite element method for parabolic equations. I. Approximation of holomorphic semi-groups,”
*J. Math. Soc. Jpn.*,**28**, No. 4, 749–771 (1976).MathSciNetMATHGoogle Scholar - 57.P. Gaitan, H. Isozaki, O. Poisson, S. Siltanen, and J. P. Tamminen, “Inverse problems for timedependent singular heat conductivities-one-dimensional case,”
*SIAM J. Math. Anal.*,**45**, No. 3, 1675–1690 (2013).MathSciNetMATHGoogle Scholar - 58.G. C. Garcia, A. Osses, and M. Tapia, “A heat source reconstruction formula from single internal measurements using a family of null controls,”
*J. Inverse Ill-Posed Probl.*,**21**, No. 6, 755–779 (2013).MathSciNetMATHGoogle Scholar - 59.N. L. Gol’dman, “On a counterexample of inverse parabolic problems with final overdetermination,”
*Dokl. Math.***88**, No. 3, 714–716 (2013); translation from*Dokl. Akad. Nauk, Ross. Akad. Nauk*,**453**, No. 5, 479–481 (2013).Google Scholar - 60.N. L. Gol’dman, “Finding the coefficient multiplying the time derivative in quasilinear parabolic equations in H¨older spaces,”
*Differ. Equ.*,**48**, No. 12, 1563–1571 (2012); translation from*Differ. Uravn.*,**48**, No. 12, 1597–1606 (2012).Google Scholar - 61.N. L. Gol’dman, “On the properties of solutions of parabolic equations with unknown coefficients,”
*Differ. Uravn.*,**47**, No. 1, 60–69 (2011); translation in*Differ. Equ.*,**47**, No. 1, 60–68 (2011).Google Scholar - 62.N. L. Gol’dman, “Determination of the right-hand side in a quasilinear parabolic equation with final observation,”
*Differ. Uravn.*,**41**, No. 3, 366–374, 430 (2005); translation in*Differ. Equ.*,**41**, No. 3, 384–392 (2005).Google Scholar - 63.O. F. Gozukizil and M. Yaman, “A note on the unique solvability of an inverse problem with integral overdetermination,”
*Appl. Math. E-Notes*,**8**, 223–230 (2008).MathSciNetMATHGoogle Scholar - 64.R. D. Grigorieff, “Diskrete Approximation von Eigenwertproblemen. II. Konvergenzordnung,”
*Numer. Math.*,**24**, No. 5, 415–433 (1975).MathSciNetMATHGoogle Scholar - 65.D. Guidetti, “Determining the source term in an abstract parabolic problem from a time integral of the solution,” In:
*Bruno Pini Mathematical Analysis Seminar 2011*, 20 pp., Univ. Bologna, Alma Mater Stud., Bologna (2011).Google Scholar - 66.D. Guidetti, “Determining the source term in an abstract parabolic problem from a time integral of the solution,”
*Mediterr. J. Math.*,**9**, No. 4, 611–633 (2012).MathSciNetMATHGoogle Scholar - 67.D. Guidetti, “Partial reconstruction of the source term in a linear parabolic initial problem with Dirichlet boundary conditions,”
*Discrete Contin. Dyn. Syst.*,**33**, No. 11-12, 5107–5141 (2013).MathSciNetMATHGoogle Scholar - 68.D. Guidetti, “Partial reconstruction of the source term in a linear parabolic initial problem with first order boundary conditions,”
*Appl. Anal.*,**93**, No. 3, 511–538 (2014).MathSciNetMATHGoogle Scholar - 69.D. Guidetti, “Partial reconstruction of the source term in a linear parabolic initial value problem,”
*J. Math. Anal. Appl.*,**355**, No. 2, 796–810 (2009).MathSciNetMATHGoogle Scholar - 70.D. Guidetti, “Convergence to a stationary state of solutions to inverse problems of parabolic type,”
*Discrete Contin. Dynam. Syst. Ser. S*,**6**, No. 3, 711–722 (2013).MathSciNetMATHGoogle Scholar - 71.D. Guidetti, B. Karasozen, and S. Piskarev, “Approximation of abstract differential equations,”
*J. Math. Sci.*,**122**, No. 2, 3013–3054 (2004).MathSciNetMATHGoogle Scholar - 72.A. Hasanov and B. Pektas, “Identification of an unknown time-dependent heat source term from overspecified Dirichlet boundary data by conjugate gradient method,”
*Comput. Math. Appl.*,**65**, No. 1, 42–57 (2013).MathSciNetMATHGoogle Scholar - 73.A. Hasanov, M. Otelbaev, and B. Akpayev, “Inverse heat conduction problems with boundary and final time measured output data,”
*Inverse Probl. Sci. Eng.*,**19**, No. 7, 985–1006 (2011).MathSciNetMATHGoogle Scholar - 74.A. Hasanov and M. Slodicka, “An analysis of inverse source problems with final time measured output data for the heat conduction equation: a semigroup approach,”
*Appl. Math. Lett.*,**26**, No. 2, 207–214 (2013).MathSciNetMATHGoogle Scholar - 75.Dinh Nho Hao, Phan Xuan Thanh, D. Lesnic, and M. Ivanchov, “Determination of a source in the heat equation from integral observations,”
*J. Comput. Appl. Math.*,**264**, 82–98 (2014).MathSciNetMATHGoogle Scholar - 76.A. Hazanee, M. I. Ismailov, D. Lesnic, and N. B. Kerimov, “An inverse time-dependent source problem for the heat equation,”
*Appl. Numer. Math.*,**69**, 13–33 (2013).MathSciNetMATHGoogle Scholar - 77.R. H. W. Hoppe, “A constructive approach to the Bellman semigroup,”
*Nonlinear Anal.*,**9**, No. 11, 1165–1181 (1985).MathSciNetMATHGoogle Scholar - 78.M. S. Hussein, D. Lesnic, and M. I. Ivanchov, “Simultaneous determination of time-dependent coefficients in the heat equation,”
*Comput. Math. Appl.*,**67**, No. 5, 1065–1091 (2014).MathSciNetMATHGoogle Scholar - 79.O. Yu. Imanuvilov and M. Yamamoto, “Uniqueness for inverse boundary value problems by Dirichlet-to-Neumann map on subboundaries,”
*Milan J. Math.*,**81**, No. 2, 187–258 (2013).MathSciNetMATHGoogle Scholar - 80.O. Yu. Imanuvilov and M. Yamamoto, “Inverse problem by Cauchy data on an arbitrary subboundary for systems of elliptic equations,”
*Inverse Probl.*,**28**, No. 9, 095015, (2012), 30 pp.MATHGoogle Scholar - 81.O. Yu. Imanuvilov, V. Isakov, and M. Yamamoto, “New realization of the pseudoconvexity and its application to an inverse problem,”
*Appl. Anal.*,**88**, No. 5, 637–652 (2009).MathSciNetMATHGoogle Scholar - 82.O. Yu. Imanuvilov, G. Uhlmann, and M. Yamamoto, “Determination of second-order elliptic operators in two dimensions from partial Cauchy data,”
*Proc. Natl. Acad. Sci. USA*,**108**, No. 2, 467–472 (2011).MathSciNetMATHGoogle Scholar - 83.O. Yu. Imanuvilov, G. Uhlmann, and M. Yamamoto, “Inverse boundary value problem by measuring Dirichlet data and Neumann data on disjoint sets,”
*Inverse Probl.*,**27**, No. 8, 085007 (2011), 26 pp.MathSciNetMATHGoogle Scholar - 84.O. Yu. Imanuvilov, G. Uhlmann, and M. Yamamoto, “Partial Cauchy data for general second order elliptic operators in two dimensions,”
*Publ. Res. Inst. Math. Sci.*,**48**, No. 4, 971–1055 (2012).MathSciNetMATHGoogle Scholar - 85.O. Yu. Imanuvilov and M. Yamamoto, “Stability estimate in a Cauchy problem for a hyperbolic equation with variable coefficients. Inverse problems: modeling and simulation,”
*J. Inverse Ill-Posed Probl.*,**13**, No. 6, 583–594 (2005).MathSciNetMATHGoogle Scholar - 86.O. Yu. Imanuvilov and M. Yamamoto, “Global Lipschitz stability in an inverse hyperbolic problem by interior observations,” In:
*Special issue to celebrate Pierre Sabatier’s 65th birthday (Montpellier, 2000)*,*Inverse Probl.*,**17**, No. 4, 717–728 (2001).Google Scholar - 87.O. Yu. Imanuvilov and M. Yamamoto, “Global uniqueness and stability in determining coefficients of wave equations,”
*Commun. Partial Differ. Equ.*,**26**, No. 7-8, 1409–1425 (2001).MathSciNetMATHGoogle Scholar - 88.V. Isakov, “Uniqueness for inverse parabolic problems with a lateral overdetermination,”
*Commun. Partial Differ. Equ.*,**14**, No. 6, 681–689 (1989).MathSciNetMATHGoogle Scholar - 89.V. Isakov, “Inverse parabolic problems with the final overdetermination,”
*Commun. Pure Appl. Math.*,**44**, No. 2, 185–209 (1991).MathSciNetMATHGoogle Scholar - 90.M. I. Ismailov and F. Kanca, “An inverse coefficient problem for a parabolic equation in the case of nonlocal boundary and overdetermination conditions,”
*Math. Methods Appl. Sci.*,**34**, No. 6, 692–702 (2011).MathSciNetMATHGoogle Scholar - 91.V. K. Ivanov, V. V. Vasin, and V. P. Tanana,
*Theory of Linear Ill-Posed Problems and Its Applications*, VSP, Utrecht (2002).MATHGoogle Scholar - 92.V. K. Ivanov, I. V. Mel’nikova, and A. I. Filinkov,
*Operator-Differential Equations and Ill-Posed Problems*[in Russian], Nauka, Moscow (1995).MATHGoogle Scholar - 93.M. I. Ivanchov, “Inverse problem for a multidimensional heat equation with an unknown source function,”
*Mat. Stud.*,**16**, No. 1, 93–98 (2001).MathSciNetMATHGoogle Scholar - 94.M. I. Ivanchov, “Inverse problem for semilinear parabolic equation,”
*Mat. Stud.*,*29*, No. 2, 181–191 (2008).MathSciNetMATHGoogle Scholar - 95.S. I. Kabanikhin,
*Projection-Difference Methods for Calculation of Coefficients of Hyperbolic Equations*[in Russian], Nauka, Novosibirsk (1988).MATHGoogle Scholar - 96.V. L. Kamynin, “On the inverse problem of determining the leading coefficient in a parabolic equation,”
*Mat. Zametki*,**84**, No. 1, 48–58 (2008); translation in*Math. Notes*,**84**, No. 1-2, 45–54 (2008).Google Scholar - 97.V. L. Kamynin, “On the unique solvability of an inverse problem for parabolic equations with a final overdetermination condition,”
*Mat. Zametki*,**73**, No. 2, 217–227 (2003); translation in*Math. Notes*,**73**, No. 1-2, 202–211 (2003).Google Scholar - 98.V. L. Kamynin, “On an inverse problem of determining the right-hand side of a parabolic equation with the integral overdetermination condition,”
*Mat. Zametki*,**77**, No. 4, 522–534 (2005); translation in*Math. Notes*,**77**, No. 3-4, 482–493 (2005).Google Scholar - 99.V. L. Kamynin, “The inverse problem of determining the lower-order coefficient in parabolic equations with integral observation,”
*Mat. Zametki*,**94**, No. 2, 207–217 (2013); translation in*Math. Notes*,**94**, No. 1-2, 205–213 (2013).Google Scholar - 100.V. L. Kamynin and E. Franchini, “An inverse problem for a higher-order parabolic equation,
*Mat. Zametki*,**64**, No. 5, 680–691 (1998); translation in*Math. Notes*,**64**, No. 5-6, 590–599 (1998).Google Scholar - 101.F. Kanca, “The inverse problem of the heat equation with periodic boundary and integral overdetermination conditions,”
*J. Inequal. Appl.*,**2013**, No. 108 (2013), 9 pp.Google Scholar - 102.F. Kanca, “Inverse coefficient problem of the parabolic equation with periodic boundary and integral overdetermination conditions,”
*Abstr. Appl. Anal.*, Art. ID 659804 (2013), 7 pp.Google Scholar - 103.F. Kanca and M. I. Ismailov, “The inverse problem of finding the time-dependent diffusion coefficient of the heat equation from integral overdetermination data,”
*Inverse Probl. Sci. Eng.*,**20**, No. 4, 463–476 (2012).MathSciNetMATHGoogle Scholar - 104.T. Kato,
*Perturbation Theory for Linear Operators*. Springer-Verlag, Berlin (1995).MATHGoogle Scholar - 105.N. B. Kerimov and M. I. Ismailov, “An inverse coefficient problem for the heat equation in the case of nonlocal boundary conditions,”
*J. Math. Anal. Appl.*,**396**, No. 2, 546–554 (2012).MathSciNetMATHGoogle Scholar - 106.S. Kim and M. Yamamoto, “Uniqueness in identification of the support of a source term in an elliptic equation,”
*SIAM J. Math. Anal.*,**35**, No. 1, 148–159 (2003).MathSciNetMATHGoogle Scholar - 107.J. Kisynski, “On cosine operator functions and one parameter groups of operators,”
*Stud. Match.*,**44**, 93–105 (1972).MathSciNetMATHGoogle Scholar - 108.V. Komornik and M. Yamamoto, “Upper and lower estimates in determining point sources in a wave equation,”
*Inverse Probl.*,**18**, No. 2, 319–329 (2002).MathSciNetMATHGoogle Scholar - 109.A. B. Kostin, “The inverse problem of reconstructing a source in a parabolic equation from the nonlocal observation condition,”
*Mat. Sb.*,**204**, No. 10, 3–46 (2013); translation in*Sb. Math.*,**204**, No. 9-10, 1391–1434 (2013).Google Scholar - 110.A. B. Kostin, “Counterexamples in inverse problems for parabolic, elliptic, and hyperbolic equations,”
*Comput. Math. Math. Phys.*,**54**, No. 5, 797–810 (2014).MathSciNetMATHGoogle Scholar - 111.A. I. Kozhanov and R. R. Safiullova, “Linear inverse problems for parabolic and hyperbolic equations,”
*J. Inverse Ill-Posed Probl.*,**18**, No. 1, 1–24 (2010).MathSciNetMATHGoogle Scholar - 112.M. A. Krasnosel’skii, E. A. Lifshits, and A. V. Sobolev,
*Positive Linear Systems. The Method of Positive Operators*, Heldermann Verlag, Berlin (1989).MATHGoogle Scholar - 113.S. G. Krein,
*Linear Differential Equations in Banach Spaces*, Am. Math. Soc., Providence, Rhode Island (1971).Google Scholar - 114.S. G. Krein and G. I. Laptev, “Boundary-value problems for second-order differential equations in Banach spaces, I,”
*Differ. Uravn.*,**2**, No. 3, 382–390 (1966).MathSciNetMATHGoogle Scholar - 115.S. G. Krein and G. I. Laptev, “Well-posedness of boundary-value problems for second-order differential equations in Banach spaces, II,”
*Differ. Uravn.*,**2**, No. 7, 919–926 (1966).Google Scholar - 116.S. G. Krein and G. I. Laptev, “Boundary-value problems for equations in Hilbert spaces,”
*Dokl. Akad. Nauk SSSR*,**146**, No. 3, 535–538 (1962).MathSciNetGoogle Scholar - 117.C.-C. Kuo, “On
*α*-times integrated*C*-semigroups and the abstract Cauchy problem,”*Stud. Math.*,**142**, 201–217 (2000).MathSciNetGoogle Scholar - 118.M. M. Lavrent’ev, V. G. Romanov, and S. P. Shishatskii,
*Ill-Posed Problems of Mathematical Physics and Analysis*, Am. Math. Soc., Providence, Rhode Island (1986).Google Scholar - 119.D. Lesnic, S. A. Yousefi, and M. Ivanchov, “Determination of a time-dependent diffusivity from nonlocal conditions,”
*Appl. Math. Comput.*,**41**, No. 1-2, 301–320 (2013).MathSciNetMATHGoogle Scholar - 120.S. Li, B. Miara, and M. Yamamoto, “A Carleman estimate for the linear shallow shell equation and an inverse source problem,”
*Discrete Contin. Dyn. Syst.*,**23**, No. 1-2, 367–380 (2009).MathSciNetMATHGoogle Scholar - 121.Y.-C. Li and S.-Y. Shaw, “On generators of integrated
*C*-semigroups and*C*-cosine functions,”*Semigroup Forum*,**47**, 29–35 (1993).MathSciNetMATHGoogle Scholar - 122.Y.-C. Li and S.-Y. Shaw,
*N*-times integrated*C*-semigroups and the abstract Cauchy problem,*Taiwan. J. Math.*,**1**, 75–102 (1997).MathSciNetMATHGoogle Scholar - 123.I. K. Lifanov, L. N. Poltavskii, and G. M. Vainikko, “Hypersingular integral equations and their applications,” In:
*Differential and Integral Equations and Their Applications. 4*, Chapman & Hall/CRC Press, Boca Raton, Florida (2004), 396 p.Google Scholar - 124.L. Ling, Y. C. Hon, and M. Yamamoto, “Inverse source identification for Poisson equation,”
*Inverse Probl. Sci. Eng.*,**13**, No. 4, 433–447 (2005).MathSciNetMATHGoogle Scholar - 125.L. Ling, M. Yamamoto, Y. C. Hon, and T. Takeuchi, “Identification of source locations in two-dimensional heat equations,”
*Inverse Probl.*,**22**, No. 4, 1289–1305 (2006).MathSciNetMATHGoogle Scholar - 126.A. Lorenzi and I. I. Vrabie, “Identification for a semilinear evolution equation in a Banach space,”
*Inverse Probl.*,**26**, No. 8, 085009, (2010), 16 pp.MathSciNetMATHGoogle Scholar - 127.L. A. Lusternik and V. I. Sobolev,
*Elements of Functional Analysis*[in Russian], Moscow (1965).Google Scholar - 128.A. S. Lyubanova, “Identification of a constant coefficient in a quasi-linear elliptic equation,”
*J. Inverse Ill-Posed Probl.*,**22**, No. 3, 341–356 (2014).MathSciNetMATHGoogle Scholar - 129.Y. T. Mehraliyev and F. Kanca, “An inverse boundary value problem for a second order elliptic equation in a rectangle,”
*Math. Model. Anal.*,**19**, No. 2, 241–256 (2014).MathSciNetGoogle Scholar - 130.V. A. Morozov,
*Methods for the Regularization of Unstable Problems*[in Russian], Moscow (1987).Google Scholar - 131.V. A. Morozov,
*Regular Methods for Solving Ill-Posed Problems*[in Russian], Nauka, Moscow (1987).Google Scholar - 132.R. Nagel, et al.,
*One-Parameter Semigroups of Positive Operators*, Springer-Verlag, Berlin (1986).MATHGoogle Scholar - 133.D. G. Orlovsky, “An inverse problem for a second order differential equation in a Banach space,”
*Differ. Equ.*,**25**, No. 6, 1000–1009 (1989).MathSciNetGoogle Scholar - 134.D. G. Orlovsky, “Inverse Dirichlet problem for an equation of elliptic type,”
*Differ. Equ.*,**44**, No. 1, 124–134 (2008).MathSciNetGoogle Scholar - 135.D. G. Orlovsky, “An inverse problem of determining a parameter of an evolution equation,”
*Differ. Equ.*,**26**, No. 9, 1614–1621 (1990).Google Scholar - 136.D. G. Orlovsky, “Fredholm-type solvability of inverse boundary value problems for abstract differential equations of second order,”
*Differ. Equ.*,**28**, No. 4, 1614–1621 (1992).MathSciNetGoogle Scholar - 137.D. G. Orlovsky, “Inverse problem for elliptic equation in a Banach space with Bitsadze–Samarsky boundary value conditions,”
*J. Inverse Ill-Posed Probl.*,**21**, No. 1, 141–157 (2013).MathSciNetMATHGoogle Scholar - 138.D. Orlovsky and S. Piskarev, “On approximation of inverse problems for abstract elliptic problems,”
*J. Inverse Ill-posed Problems*,**17**, No. 8, 765–782 (2009).MathSciNetMATHGoogle Scholar - 139.D. Orlovsky and S. Piskarev, “Approximation of inverse Bitzadze–Samarsky problem for elliptic eqaution with Dirichlet conditions,”
*Differ. Equ.*, No. 7 (2013).Google Scholar - 140.D. Orlovsky, S. Piskarev, and R. Spigler, “On approximation of inverse problems for abstract hyperbolic equations,”
*Taiwan. J. Math.*, Vol. 14, No. 3B, 1145–1167 (2010).MathSciNetMATHGoogle Scholar - 141.E. Ozbilge, “Determination of the unknown boundary condition of the inverse parabolic problems via semigroup method,”
*Bound. Value Probl.*,**2013**, No. 2 (2013), 7 pp.Google Scholar - 142.E. Ozbilge, “Convergence theorem for a numerical method of a 1D coefficient inverse problem,”
*Appl. Anal.*,**93**, No. 8, 1611–1625 (2014).MathSciNetMATHGoogle Scholar - 143.S. I. Piskarev, “ On approximation of holomorphic semigroups,”
*Tartu Ül. Toimetised*,**492**, 3–23 (1979).MathSciNetMATHGoogle Scholar - 144.S. Piskarev,
*Differential Equations in Banach Space and Their Approximation*[in Russian], Moscow (2005).Google Scholar - 145.S. Piskarev, “Discretisation of abstract hyperbolic equation,”
*Tartu Ül. Toimetised*,**500**, 3–23 (1979).MathSciNetGoogle Scholar - 146.S. Piskarev, “Solution of a second order evolution equation under the Krein–Fattorini conditions,”
*Differ. Equ.*,**21**, 1100–1106 (1985).MathSciNetMATHGoogle Scholar - 147.S. I. Piskarev, “Error estimates in the approximation of semigroups of operators by Padé fractions,”
*Izv. Vyssh. Uchebn. Zaved., Mat.*,**4**, 33–38 (1979).MATHGoogle Scholar - 148.S. I. Piskarev, “Approximation of positive
*C*_{0}-semigroups of operators,”*Differ. Uravn.*,**27**, No. 7, 1245–1250, 1287 (1991).Google Scholar - 149.R. Pourgholi, A. A. Molai, and T. Houlari, “Resolution of an inverse parabolic problem using sinc-Galërkin method,”
*TWMS J. Appl. Eng. Math.*,**3**, No. 2, 160–181 (2013).MathSciNetMATHGoogle Scholar - 150.R. Pourgholi and A. Esfahani, “An efficient numerical method for solving an inverse wave problem,”
*Int. J. Comput. Methods*,**10**, No. 3, 1350009, 21 pp. (2013).MathSciNetMATHGoogle Scholar - 151.G. Da Prato and P. Grisvard, “Sommes d’operateus lieaires et equations differentielles operationnelles,”
*J. Math. Pures Appl.*,**54**, No. 3, 305–387 (1975).MathSciNetMATHGoogle Scholar - 152.G. Da Prato and P. Grisvard, “Équations d’evolution abstraites non linus eaires de type parabolique,”
*C. R. Acad. Sci. Paris, Ser. A-B*,**283**, No. 9, A709–A711 (1976).Google Scholar - 153.A. I. Prilepko, “Inverse problems in potential theory (elliptic, parabolic, hyperbolic equations and transport equation),”
*Math. Notes*,**14**, No. 5, 755–767 (1973).Google Scholar - 154.A. I. Prilepko, “Selected topics on inverse problems of mathematical physics,” in:
*Conditionally Well Posed Problems in Mathenatical Physics and Analysis*(ed. V. Romanov) [in Russian], Nauka, Novosibirsk, 151–162 (1992).Google Scholar - 155.A. I. Prilepko and A. B. Kostin, “An estimate for the spectral radius of an operator and the solvability of inverse problems for evolution equations,”
*Mat. Zametki*,**53**, No. 1, 89–94 (1993).MathSciNetMATHGoogle Scholar - 156.A. I. Prilepko, D. G. Orlovsky, and I. A. Vasin,
*Methods for Solving Inverse Problems in Mathematical Physics*, Marcel Dekker, New York (2000).MATHGoogle Scholar - 157.A. Prilepko, S. Piskarev, and S.-Y. Shaw, “On inverse problem for abstract differential equations in Banach spaces,”
*Inverse Ill-Posed Probl.*,**15**, 831–851 (2007).MathSciNetMATHGoogle Scholar - 158.A. I. Prilepko and I. V. Tikhonov, “Reconstruction of the inhomogeneous term in an abstract evolution equation,”
*Izv. Ross. Akad. Nauk Ser. Mat.*,**58**, No. 2, 167–188 (1994).MathSciNetMATHGoogle Scholar - 159.A. I. Prilepko and I. V. Tikhonov, “The principle of the positity of a solution to a linear inverse problem and its application to the heat conduction coefficient problem,”
*Dokl. Ross. Akad. Nauk*,**364**, No. 1, 21–23 (1999).MathSciNetMATHGoogle Scholar - 160.A. I. Prilepko and I. V. Tikhonov, “Uniqueness of the solution of an inverse problem for an evolution equation and applications to the transfer equation,”
*Mat. Zametki*,**51**, No. 2, 77–87, 158 (1992).Google Scholar - 161.A. I. Prilepko and I. V. Tikhonov, “An inverse problem with final overdetermination for an abstract evolution equation in an ordered Banach space,”
*Funkts. Anal. Prilozh.*,**27**, No. 1, 81–83 (1993); translation in*Funct. Anal. Appl.*,**27**, No. 1, 68–69 (1993).Google Scholar - 162.A. I. Prilepko and D. S. Tkachenko, “The Fredholm property of the inverse source problem for parabolic systems,”
*Differ. Equ.*,**39**, No. 12, 1785–1793 (2003).MathSciNetMATHGoogle Scholar - 163.A. I. Prilepko and D. S. Tkachenko, “The Fredholm property and the well-posedness of the inverse source problem with integral overdetermination,”
*Comput. Math. Math. Phys.*,**43**, No. 9, 1338–1347 (2003).MathSciNetMATHGoogle Scholar - 164.A. I. Prilepko and D. S. Tkachenko, “Properties of solutions of a parabolic equation and the uniqueness of the solution of the inverse source problem with integral overdetermination,”
*Comput. Math. Math. Phys.*,**43**, No. 4, 537–546 (2003).MathSciNetMATHGoogle Scholar - 165.A. I. Prilepko and D. S. Tkachenko, “Inverse problem for a parabolic equation with integral overdetermination,”
*J. Inverse Ill-Posed Probl.*,**11**, No. 2, 191–218 (2003).MathSciNetMATHGoogle Scholar - 166.A. I. Prilepko and D. S. Tkachenko, “An inverse problem for a parabolic equation with final overdetermination,”
*Ill-Posed Inverse Probl.*, 345–381 (2002).Google Scholar - 167.S. G. Pyatkov and A. G. Borichevskaya, “On an inverse problem for a parabolic equation with Cauchy data on a part of the lateral surface of a cylinder,”
*Sibirsk. Mat. Zh.*,**54**, No. 2, 436–449 (2013); translation in*Sib. Math. J.*,**54**, No. 2, 341–352 (2013).Google Scholar - 168.Rakesh and P. Sacks, “Uniqueness for a hyperbolic inverse problem with angular control on the coefficients,”
*J. Inverse Ill-Posed Probl.*,**19**, No. 1, 107–126 (2011).MathSciNetMATHGoogle Scholar - 169.A. Rhoden,
*Applications and adaptations of a globally convergent numerical method in inverse problems*, Ph.D. Thesis, The University of Texas at Arlington, (2013), 93 pp.Google Scholar - 170.A. Rhoden, N. Patong, Y. Liu, J. Su, and H. Liu, “A globally convergent numerical method for coefficient inverse problems with time-dependent data. Applied inverse problems,”
*Springer Proc. Math. Stat.*,**48**, 105–128, Springer, New York (2013).Google Scholar - 171.A. V. Rozanova, “Controllability in a nonlinear parabolic problem with integral overdetermination,”
*Differ. Uravn.*,**40**, No. 6, 798–815, 862 (2004); translation in*Differ. Equ.*,**40**, No. 6, 853–872 (2004).Google Scholar - 172.K. Sakamoto and M. Yamamoto, “Inverse heat source problem from time distributing overdetermination,”
*Appl. Anal.*,**88**, No. 5, 735–748 (2009).MathSciNetMATHGoogle Scholar - 173.A. A. Samarskij and E. S. Nikolaev,
*Numerical Methods for Grid Equations*, Vol. I:*Direct Methods*; Vol. II:*Iterative Methods*; Birkhäuser Verlag (1989).Google Scholar - 174.A. A. Samarskii,
*The Theory of Difference Schemes*, Marcel Dekker, New York (2001).MATHGoogle Scholar - 175.A. A. Samarskii and P. N. Vabishchevich,
*Numerical Methods for Inverse Problems in Mathematical Physics*, URSS (2004).Google Scholar - 176.A. A. Samarskii, P. P. Matus, and P. N. Vabishchevich,
*Difference Schemes with Operator Factors*, Kluwer Academic Publishers, Dordrecht (2002).MATHGoogle Scholar - 177.A. Yu. Shcheglov, “Iterative method for recovery a nonlinear source in a hyperbolic equation with final overdetermination,”
*J. Inverse Ill-Posed Probl.*,**10**, No. 6, 629–641 (2002).MathSciNetMATHGoogle Scholar - 178.A. Yu. Shcheglov, “A method for determining the coefficients of a quasilinear hyperbolic equation,”
*Zh. Vychisl. Mat. Mat. Fiz.*,**46**, No. 5, 813–833 (2006); translation in*Comput. Math. Math. Phys.*,**46**, No. 5, 776–795 (2006).Google Scholar - 179.A. Shidfar, A. Babaei, and A. Molabahrami, “Solving the inverse problem of identifying an unknown source term in a parabolic equation,”
*Comput. Math. Appl.*,**60**, No. 5, 1209–1213 (2010).MathSciNetMATHGoogle Scholar - 180.Y. V. Sidorov, M. V. Fedoruk, and M. I. Shabunin,
*Lectures on the Theory of Function of a Complex Variable*[in Russian], Nauka, Moscow (1982).Google Scholar - 181.H. A. Snitko, “Determination of the lowest coefficient for a one-dimensional parabolic equation in a domain with free boundary,”
*Mat. Zh.*,**65**, No. 11, 1531–1549 (2013).MathSciNetGoogle Scholar - 182.G. A. Snitko, “The inverse problem of finding time-dependent functions in a lower-order coefficient in a parabolic problem in a free boundary domain,”
*Mat. Metod. Fiz.-Mekh. Polya*,**56**, No. 2, 37–47 (2013); translation in*J. Math. Sci.*(N.Y.),**203**, No. 1, 40–54 (2014).Google Scholar - 183.P. E. Sobolevskii, “On elliptic equations in a Banach space,”
*Differ. Equ.*,**4**, No. 7, 1346–1348 (1969).MathSciNetGoogle Scholar - 184.P. E. Sobolevskii, “Some properties of the solutions of differential equations in fractional spaces,”
*Tr. Nauchn. Issled. Inst. Mat. Voronezh. Gos. Univ.*,**74**, 68–76 (1975).Google Scholar - 185.P. E. Sobolevskii, “The theory of semigroups and the stability of difference schemes,” In:
*Operator Theory in Function Spaces*[in Russian], Proc. School, Novosibirsk (1975), pp. 304–337; Nauka, Sibirsk. Otdel., Novosibirsk (1977).Google Scholar - 186.P. E. Sobolevskii and L. M. Chebotaryeva, “Approximate solution of the Cauchy problem for an abstract hyperbolic equation by the method of lines,”
*Izv. Vyssh. Uchebn. Zaved. Mat.*, No. 5 (180), 103–116 (1977).Google Scholar - 187.V. V. Solov’ev, “Inverse problems of source determination for the two-dimensional Poisson equation,”
*Comput. Math. Math. Phys.*,**44**, No. 5, 815–824 (2004).MathSciNetGoogle Scholar - 188.V. V. Soloviev, “Inverse problems of determining a source of a Poisson equation on the plain,”
*Zh. Vychisl. Mat. Mat. Fiz.*,**44**, No. 5, 862–871 (2004).MathSciNetGoogle Scholar - 189.V. V. Solov’ev, “Inverse problems for elliptic equations on the plane. I,”
*Differ. Uravn.*,**42**, No. 8, 1106–1114, 1151 (2006); translation in*Differ. Equ.*,**42**, No. 8, 1170–1179 (2006).Google Scholar - 190.V. V. Solov’ev, “Inverse problems for elliptic equations on the plane. II,”
*Differ. Uravn.*,**43**, No. 1, 101–109, 142 (2007); translation in*Differ. Equ.*,**43**, No. 1, 108–117 (2007).Google Scholar - 191.V. V. Solov’ev, “Inverse coefficient problems for elliptic equations in a cylinder: I,”
*Differ. Uravn.*,**49**, No. 8, 1026–1035 (2013); translation in*Differ. Equ.*,**49**, No. 8, 996–2005 (2013).Google Scholar - 192.V. V. Solov’ev, “Inverse problems for elliptic equations in the space. II,”
*Differ. Uravn.*,**47**, No. 5, 714–723 (2011); translation in*Differ. Equ.*,**47**, No. 5, 715–725 (2011).Google Scholar - 193.V. V. Solov’ev, “The inverse problem of determining the coefficient in the Poisson equation in a cylinder,”
*Zh. Vychisl. Mat. Mat. Fiz.*,**51**, No. 10, 1849–1856 (2011); translation in*Comput. Math. Math. Phys.*,**51**, No. 10, 1738–1745 (2011).Google Scholar - 194.V. V. Solov’ev, “Inverse problems of determining the source and coefficient in an elliptic equation in a rectangle,”
*Zh. Vychisl. Mat. Mat. Fiz.*,**47**, No. 8, 1365–1377 (2007); translation in*Comput. Math. Math. Phys.*,**47**, No. 8, 1310–1322 (2007).Google Scholar - 195.
- 196.P. Stefanov and G. Uhlmann, “Recovery of a source term or a speed with one measurement and applications,”
*Trans. Am. Math. Soc.*,**365**, No. 11, 5737–5758 (2013).MathSciNetMATHGoogle Scholar - 197.F. Stummel, “Diskrete Konvergenz linearer Operatoren. III,” In:
*Linear Operators and Approximation (Proc. Conf., Oberwolfach, 1971)*, 196–216;*Intern. Ser. Numer. Math.*, Vol. 20. Birkhäuser, Basel (1972).Google Scholar - 198.V. Thomée,
*Galërkin Finite Element Methods for Parabolic Problems*, Springer, Berlin (1997).MATHGoogle Scholar - 199.I. V. Tikhonov, “Solvability of a linear inverse problem with final overdetermination in a Banach space of
*L*^{1}-type,”*Fundam. Prikl. Mat.*,**4**, No. 2, 691–708 (1998).MathSciNetMATHGoogle Scholar - 200.I. V. Tikhonov, “A connection between inverse problems and terminal and integral overdeterminations,”
*Usp. Mat. Nauk*,**47**, No. 4(286), 211–212 (1992).MathSciNetGoogle Scholar - 201.I. V. Tikhonov and Yu. S. Eidelman, “A uniqueness criterion in an inverse problem for an abstract differential equation with a nonstationary inhomogeneous term,”
*Math. Notes*,**77**, No. 1–2, 246–262 (2005).MathSciNetMATHGoogle Scholar - 202.I. V. Tikhonov and Yu. S. Eidelman, “Theorems on the mapping of the point spectrum for
*C*_{0}-semigroups and their application to uniqueness problems for abstract differential equations,”*Dokl. Akad. Nauk*,**394**, No. 1, 32–35 (2004).MathSciNetGoogle Scholar - 203.I. V. Tikhonov and Yu. S. Eidelman, “Uniqueness of the solution of a two-point inverse problem for an abstract differential equation with an unknown parameter,
*Differ. Equ.*,**36**, No. 8, 1256–1258 (2000).MathSciNetMATHGoogle Scholar - 204.A. N. Tikhonov, A. S. Leonov, and A. G. Yagola,
*Nonlinear Ill-Posed Problems*, Vols. 1, 2. Chapman & Hall, London (1998).MATHGoogle Scholar - 205.C. C. Travis and G. F. Webb “Second order differential equations in Banach space,” In:
*Nonlinear Equations in Abstract Space*, 331–361 (1978).Google Scholar - 206.C. C. Travis and G. F. Webb “Cosine families and abstract non-linear second order differential equations,”
*Acta Math. Acad. Sci. Hung.*,**32**, No. 3–4, 75–96 (1978).MATHGoogle Scholar - 207.T. Ushijima, “Approximation theory for semi-groups of linear operators and its application to approximation of wave equations,”
*Jpn. J. Math. (N.S.)*,**1**, No. 1, 185–224 (1975/76).Google Scholar - 208.G. Vainikko,
*Funktionalanalysis der Diskretisierungsmethoden*, Leipzig, B. G. Teubner Verlag (1976).MATHGoogle Scholar - 209.G. Vainikko, “Approximative methods for nonlinear equations (two approaches to the convergence problem),”
*Nonlinear Anal.*,**2**, 647–687 (1978).MathSciNetMATHGoogle Scholar - 210.G. Vainikko and S. Piskarev, “Regularly compatible operators,”
*Izv. Vuzov. Mat.*,**10**, 25–36 (1977).MathSciNetMATHGoogle Scholar - 211.K. Van Bockstal and M. Slodichka, “Determination of a time-dependent diffusivity in a nonlinear parabolic problem,”
*Inverse Probl. Sci. Eng.*,**23**, No. 2, 307–330 (2015).MathSciNetMATHGoogle Scholar - 212.V. V. Vasil’ev, S. G. Krein, and S. Piskarev, “Operator semigroups, cosine operator functions, and linear differential equations,”
*J. Sov. Math.*,**54**, No. 4, 1042–1129 (1991).MATHGoogle Scholar - 213.V. V. Vasil’ev and S. I. Piskarev, “Differential equations in Banach spaces. II. Theory of cosine operator functions,”
*J. Math. Sci. (N.Y.)*,**122**, No. 2, 3055–3174 (2004).MathSciNetMATHGoogle Scholar - 214.V. V. Vasil’ev and S. I. Piskarev,
*Differential Equations in Banach Spaces I. Semigroup Theory*[in Russian], Moscow State University Publish House (1996), 164 p.Google Scholar - 215.J. Voigt, “On the convex compactness property for the strong operator topology,”
*Note Mat.*,**12**, 259–269 (1992).MathSciNetMATHGoogle Scholar - 216.B. Wang, “Moving least squares method for a one-dimensional parabolic inverse problem,”
*Abstr. Appl. Anal.*, Art. ID 686020 (2014), 12 pp.Google Scholar - 217.Y. B. Wang, J. Cheng, J. Nakagawa, and M. Yamamoto, “A numerical method for solving the inverse heat conduction problem without initial value,”
*Inverse Probl. Sci. Eng.*,**18**, No. 5, 655–671 (2010).MathSciNetMATHGoogle Scholar - 218.T. Wei and M. Yamamoto, “Reconstruction of a moving boundary from Cauchy data in onedimensional heat equation,”
*Inverse Probl. Sci. Eng.*,**17**, No. 4, 551–567 (2009).MathSciNetMATHGoogle Scholar - 219.J. Wen, M. Yamamoto, and T. Wei, “Simultaneous determination of a time-dependent heat source and the initial temperature in an inverse heat conduction problem,”
*Inverse Probl. Sci. Eng.*,**21**, No. 3, 485–499 (2013).MathSciNetMATHGoogle Scholar - 220.M. Yamamoto and Xu Zhang, “Global uniqueness and stability for an inverse wave source problem for less regular data,”
*J. Math. Anal. Appl.*,**263**, No. 2, 479–500 (2001).MathSciNetMATHGoogle Scholar - 221.M. Yamamoto and Jun Zou, “Simultaneous reconstruction of the initial temperature and heat radiative coefficient,” In:
*Special issue to celebrate Pierre Sabatier’s 65th birthday (Montpellier, 2000)*,*Inverse Probl.*,**17**, No. 4, 1181–1202.Google Scholar - 222.L. Yang, M. Dehghan, Jian-Ning Yu, and Guan-Wei Luo, “Inverse problem of time-dependent heat sources numerical reconstruction,”
*Math. Comput. Simul.*,**81**, No. 8, 1656–1672 (2011).MathSciNetMATHGoogle Scholar - 223.N. Yaparova, “Numerical methods for solving a boundary-value inverse heat conduction problem,”
*Inverse Probl. Sci. Eng.*,*22*, No. 5, 832–847 (2014).MathSciNetMATHGoogle Scholar - 224.O. Zair, “Determination of point sources in vibrating plate by boundary measurements,”
*Appl. Anal.*,*92*, No. 10, 2061–2075 (2013).MathSciNetMATHGoogle Scholar

## Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018