Advertisement

Journal of Mathematical Sciences

, Volume 230, Issue 4, pp 513–646 | Cite as

Integrated Semigroups and C-Semigroups and their Applications

  • V. V. Vasil’ev
  • S. I. Piskarev
  • N. Yu. Selivanova
Article

Abstract

In this survey, some interesting generalizations of the theory of C0-semigroups and their applications are presented. The survey is divided into three parts: “Integrated semigroups,” “C-semigroups,” and “Applications.” Different approaches to the theory are discussed. The content presented is taken from articles of the last 20 years and also contains some results of the authors. Various applications are presented; most of them concern ill-posed Cauchy problems.

Keywords and phrases

semigroup integrated semigroup C-semigroup Cauchy problem differential equation 

AMS Subject Classification

47D60 47D62 65Y20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    M. Adimy, “Bifurcation de Hopf locale par semi-groupes intégrés,” C. R. Acad. Sci. Paris Sér. I Math., 311, No. 7, 423–428, (1990).MathSciNetzbMATHGoogle Scholar
  2. 2.
    M. Adimy, “Integrated semigroups and delay differential equations,” J. Math. Anal. Appl., 177, No. 1, 125–134, (1993).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    M. Adimy and Kh. Ezzinbi, “Équations de type neutre et semi-groupes intégrés,” C. R. Acad. Sci. Paris Sér. I Math., 318, No. 6, 529–534 (1994).MathSciNetzbMATHGoogle Scholar
  4. 4.
    M. Adimy and Kh. Ezzinbi, “Semi-groupes intégrés et équations différentielles á retard en dimension infinie,” C. R. Acad. Sci. Paris Sér. I Math., 323, No. 5, 481–486 (1996).MathSciNetzbMATHGoogle Scholar
  5. 5.
    N. U. Ahmed, “Optimal control for linear systems described by m times integrated semigroups,” Publ. Math. Debrecen, 50, Nos. 3–4, 273–285 (1997).Google Scholar
  6. 6.
    M. Akkar, H. R. Ameziane, and A. Blali, “C-semigroupes α-intégrés affiliés á des algébres d’opérateurs,” in: Operator Theory and Banach Algebras (Rabat, 1999), Theta, Bucharest (2003), pp. 11–21.Google Scholar
  7. 7.
    Sh. Al-Sharif, “C-semigroups and (P,Q)-summing operators,” Sci. Math. Jpn., 57, No. 2, 389–396 (2003).Google Scholar
  8. 8.
    Sh. Al-Sharif, “C-semigroups and integral operators,” Sci. Math. Jpn., 62, No. 2, 265–271 (2005).Google Scholar
  9. 9.
    Sh. Al-Sharif, “The Hille–Yosida inequality for C-semigroups and ideal norms,” Nonlinear Funct. Anal. Appl., 12, No. 2, 273–284 (2007).Google Scholar
  10. 10.
    Sh. Al-Sharif and R. Khalil, “On generators of positive C-semigroups and a note on compact C-semigroups,” Mat. Stud., 27, No. 2, 189–195 (2007).Google Scholar
  11. 11.
    S. M. A. Alsulami, “C-admissibility and analytic C-semigroups,” Nonlinear Anal., 74, No. 16, 5754–5758 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    K. A. Ames and R. J. Hughes, “Structural stability for ill-posed problems in Banach space,” Semigroup Forum, 70, No. 1, 127–145 (2005).Google Scholar
  13. 13.
    W. Arendt, “Approximation of degenerate semigroups,” Taiwan. J. Math., 5, No. 2, 279–295 (2001).MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    W. Arendt, “Resolvent positive operators,” Proc. London Math. Soc. (3), 54, No. 2, 321–349 (1987).Google Scholar
  15. 15.
    W. Arendt, “Semigroups and evolution equations: functional calculus, regularity and kernel estimates. Evolutionary equations,” in: Handbook Differential Equations, Vol. 1, North-Holland, Amsterdam (2004), pp. 1–85.Google Scholar
  16. 16.
    W. Arendt, “Sobolev imbeddings and integrated semigroups,” in: Semigroup Theory and Evolution Equations (Delft, 1989), 29–40, Lect. Notes Pure Appl. Math., 135, Marcel Dekker, New York (1991).Google Scholar
  17. 17.
    W. Arendt, “Vector-valued Laplace transforms and Cauchy problems,” Israel J. Math., 59, No. 3, 327–352 (1987).MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Monogr. Math., 96, Birkh¨auser, Basel (2001).Google Scholar
  19. 19.
    W. Arendt, O. El-Mennaoui, and V. Keyantuo, “Local integrated semigroups: Evolution with jumps of regularity,” J. Math. Anal. Appl., 186, No. 2, 572–595 (1994).MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    W. Arendt and A. Favini, “Integrated solutions to implicit differential equations,” Rend. Sem. Mat. Univ. Politec. Torino, 51, No. 4, 315–329 (1993).MathSciNetzbMATHGoogle Scholar
  21. 21.
    W. Arendt and H. Kellermann, “Integrated solutions of Volterra integro-differential equations and applications. Volterra integro-differential equations in Banach spaces and applications” Pitman Res. Notes Math. Ser., 190, 21–51 (1989).zbMATHGoogle Scholar
  22. 22.
    W. Arendt, F. Neubrander, and U. Schlotterbeck, “Interpolation of semigroups and integrated semigroups,” Semigroup Forum, 45, No. 1, 26–37 (1992).Google Scholar
  23. 23.
    A. Ashyralyev, J. Pastor, S. I. Piskarev, and H. A. Yurtsever, “Second-order equations in functional spaces: qualitative and discrete well-posedness,” Abstr. Appl. Anal., Art. ID 948321 (2015).Google Scholar
  24. 24.
    M. Bachar and O. Arino, “Integrated semigroup and linear ordinary differential equation with impulses. Dynamical systems and their applications in biology,” Fields Inst. Commun., 36, 17–31 (2003).zbMATHGoogle Scholar
  25. 25.
    M. Bachar and O. Arino, “Integrated semigroup associated to a linear delay differential equation with impulses,” Differ. Integral Equ., 17, No. 3–4, 407–442 (2004).MathSciNetzbMATHGoogle Scholar
  26. 26.
    M. Bachar, W. Desch, and Mardiyana, “A class of semigroups regularized in space and time,” J. Math. Anal. Appl., 314, 558–578 (2006).Google Scholar
  27. 27.
    E. G. Bajlekova, Fractional evolution equations in Banach spaces, Ph.D. Thesis, Eindhoven Univ. of Technology (2001).Google Scholar
  28. 28.
    A. Bakushinsky and A. Goncharsky, Ill-Posed Problems: Theory and Applications, Math. Appl., 301 (1994).Google Scholar
  29. 29.
    A. B. Bakushinsky, M. Yu. Kokurin, and V. V. Klyuchev, “A rate of convergence and error estimates for difference methods used to approximate solutions to ill-posed Cauchy problems in a Banach space,” Numer. Meth. Program., No. 7, 163–171 (2006).Google Scholar
  30. 30.
    A. B. Bakushinsky, M. Yu. Kokurin, and M. M. Kokurin, “On a class of finite difference methods for ill-posed Cauchy problems with noisy data,” J. Inverse Ill-Posed Probl., 18, No. 9, 959–977 (2010).MathSciNetzbMATHGoogle Scholar
  31. 31.
    A. B. Bakushinsky, M. Yu. Kokurin, and A. Smirnova, Iterative Methods for Ill-Posed Problems. An Introduction, Inverse Ill-Posed Problems, 54, Walter de Gruyter, Berlin (2011).Google Scholar
  32. 32.
    A. B. Bakushinsky, M. Yu. Kokurin, and S. K. Paymerov, “On error estimates of difference solution methods for ill-posed Cauchy problems in a Hilbert space,” J. Inverse Ill-Posed Probl., 16, No. 6, 553–565 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    A. G. Baskakov, N. S. Kaluzhina, and D. M. Polyakov, “Slowly varying at infinity operator semigroups,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 7, 3–14 (2014).Google Scholar
  34. 34.
    B. Baumer and F. Neubrander, Existence and uniqueness of solutions of ordinary linear differential equations in Banach spaces, Preprint Louisiana State Univ. (1995).Google Scholar
  35. 35.
    L. Beilina, M. V. Klibanov, and M. Yu. Kokurin, “Adaptivity with relaxation for ill-posed problems and global convergence for a coefficient inverse problem,” J. Math. Sci. (N.Y.), 167, No. 3, 279–325 (2010).Google Scholar
  36. 36.
    A. Bobrowski, “Integrated semigroups and Trotter–Kato theorem,” Bull. Pol. Acad. Sci., 41, No. 4, 297–304 (1994).MathSciNetzbMATHGoogle Scholar
  37. 37.
    A. Bobrowski, On approximation of (1.A) semigroups by discrete semigroups, Preprint, Technical Univ. of Lublin (1997).Google Scholar
  38. 38.
    A. Bobrowski, “The Widder–Arendt theorem on inverting of the Laplace transform and its relationship with the theory of semigroups of operators,” Preprint, Rice University, Houston Texas (1997).Google Scholar
  39. 39.
    A. Bobrowski, “The Widder–Arendt theorem theorem on inverting of the Laplace transform and its relationship with the theory of semigroups of operators,” Meth. Funct. Anal. Topol., 3, No. 4, 1–34 (1997).MathSciNetzbMATHGoogle Scholar
  40. 40.
    A. Bobrowski, “Integrated semigroups and the Trotter–Kato theorem,” Bull. Pol. Acad. Sci. Math., 42, 297–304(1994).MathSciNetzbMATHGoogle Scholar
  41. 41.
    A. Bobrowski, “Generalized telegraph equation and the Sova–Kurtz version of the Trotter–Kato theorem,” Ann. Pol. Math., 64, 37–45 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    A. Bobrowski, “On the Yosida approximation and the Widder–Arendt representation theorem,” Stud. Math., 124, 281–290 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    N. Boussetila and F. Rebbani, “Optimal regularization method for ill-posed Cauchy problems,” Electron. J. Differ. Equ. Conf., No. 147 (2006).Google Scholar
  44. 44.
    K. Burrage and S. Piskarev, “Stochastic methods for ill-posed problems,” BIT Numer. Math, 40, No. 2, 226–240 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    S. Busenberg and B. Wu, “Convergence theorems for integrated semigroups,” Differ. Integral Equ., 5, No. 3, 509–520 (1992).MathSciNetzbMATHGoogle Scholar
  46. 46.
    V. Cachia, “Convergence at the origin of integrated semigroups,” Stud. Math., 187, No. 3, 199–218 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    V. Cachia, “Convergence at the origin of integrated semigroups,” arXiv:math/0404414. (2004).Google Scholar
  48. 48.
    V. Cachia, “Euler’s exponential formula for semigroups,” Semigroup Forum, 68, No. 1, 1–24 (2004).Google Scholar
  49. 49.
    D. Cao, X. Song, R. Rong, and H. Zhu, “The asymptotic behavior and strong or weak stability for C-semigroup,” Nanjing Daxue Xuebao Shuxue Bannian Kan, 22, No. 1, 107–114 (2005).Google Scholar
  50. 50.
    D. X. Cao, X. Q. Song, and R. Rong, “Laplace inverse transformation for n-time integrated C-semigroups,” J. Xuzhou Norm. Univ. Nat. Sci. Ed., 22, No. 1, 7–9 (2004).MathSciNetzbMATHGoogle Scholar
  51. 51.
    D. X. Cao, X. Q. Song, and C. X. Wang, “The pertubation theory for n times integrated Csemigroups,” Math. Practice Theory, 36, No. 1, 220–223 (2006).MathSciNetGoogle Scholar
  52. 52.
    V. Cataná, “The second order abstract Cauchy problem and integrated semigroups generated by matrix pseudo-differential operators,” An. Univ. Craiova Ser. Mat. Inform., 30, No. 1, 78–87 (2003).MathSciNetzbMATHGoogle Scholar
  53. 53.
    D. N. Chalishajar, “Controllability of singular system using α times integrated semigroups,” Bull. Calcutta Math. Soc., 95, No. 2, 95–100 (2003).MathSciNetzbMATHGoogle Scholar
  54. 54.
    J.-C. Chang and S.-Y. Shaw, “Powers of generators and Taylor expansions of integrated semigroups of operators,” Taiwan. J. Math., 10, No. 1, 101–115 (2006).MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    J.-C. Chang and S.-Y. Shaw, “Optimal and nonoptimal rates of approximation for integrated semigroups and cosine functions,” J. Approx. Theory, 90, No. 2, 200–223 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Y.-H. Chang and C.-H. Hong, “Relative bounded perturbation of abstract Cauchy problem,” Far East J. Math. Sci., 29, No. 3, 555–575 (2008).MathSciNetzbMATHGoogle Scholar
  57. 57.
    J.-C. Chen, N. V. Minh, and S.-Y. Shaw, “C-semigroups and almost periodic solutions of evolution equations,” J. Math. Anal. Appl., 298, No. 2, 432–445 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    C. Chen and X. Q. Song, “Asymptotic almost periodic motions of C-semigroups,” Acta Anal. Funct. Appl., 11, No. 3, 240–245 (2009).MathSciNetzbMATHGoogle Scholar
  59. 59.
    C. Chen and X. Q. Song, “Weakly asymptotically almost periodic motions of C-semigroups,” J. Syst. Sci. Math. Sci., 29, No. 5, 657–662 (2009).MathSciNetzbMATHGoogle Scholar
  60. 60.
    C. Chen, X. Q. Song, and X. M. Li, “The self-adjoint solution of Lyapunov’s equation of C-semigroups and its stability,” Nanjing Daxue Xuebao Shuxue Bannian Kan, 25, No. 1, 86–93 (2008).Google Scholar
  61. 61.
    J.-Ch. Chen, N. V. Minh, and S.-Y. Shaw, “C-semigroups and almost periodic solutions of evolution equations,” J. Math. Anal. Appl., 298, No. 2, 432–445 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    W. Zh. Chen, “A Freud type estimate for probabilistic representation formulas for C-semigroups,” Xiamen Daxue Xuebao Ziran Kexue Ban, 33, No. 3, 279–285 (1994).Google Scholar
  63. 63.
    W. Zh. Chen, “A representation formula for C-infinitesimal generators,” Xiamen Daxue Xuebao Ziran Kexue Ban, 32, No. 2, 135–140 (1993).Google Scholar
  64. 64.
    W. Zh. Chen, “A saturation theorem for probabilistic representations of C-semigroups,” Xiamen Daxue Xuebao Ziran Kexue Ban, 34, No. 1, 1–6 (1995).Google Scholar
  65. 65.
    W. Zh. Chen, “Shisha–Mond type estimates for probabilistic representations of C-semigroups,” Xiamen Daxue Xuebao Ziran Kexue Ban, 32, No. 4, 391–396 (1993).Google Scholar
  66. 66.
    W. Zh. Chen, “The exponential-type representation formulas for C-semigroups,” Approx. Theory Appl. (N.S.), 11, No. 1, 43–53 (1995).Google Scholar
  67. 67.
    Chen Chuang and Li Miao, “On fractional resolvent operator functions,” Semigroup Forum, 80, 121–142 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Z. Q. Chen and H. M. Liu, “Vector-valued Laplace transforms and right continuous integral semigroups,” Acta Math. Sci., 16, No. 1, 15–22 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    W. Chojnacki. “Group representations of bounded cosine functions,” J. Rein. Angew. Math., 478, 61–84 (1996).MathSciNetzbMATHGoogle Scholar
  70. 70.
    W. Chojnacki, “On group decompositions of bounded cosine sequences,” Stud. Math., 181, No. 1, 61–85 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    I. Cioranescu, “A generation result for C-regularized semigroups. Semigroups of linear and nonlinear operations and applications” (Cura,cao, 1992), 121–128, Kluwer Acad. Publ., Dordrecht (1993).Google Scholar
  72. 72.
    I. Cioranescu, “On a class of C-regularized semigroups. Evolution equations, control theory, and biomathematics” (Han sur Lesse, 1991), Lecture Notes in Pure and Appl. Math., 155, 45–50, Dekker, New York (1994).Google Scholar
  73. 73.
    I. Cioranescu, V. Keyantuo, “C-semigroups: Generation and analyticity. Generalized functions linear and nonlinear problems” (Novi Sad, 1996), Integral Transform. Spec. Funct., 6, No. 1-4, 15–25 (1998).Google Scholar
  74. 74.
    J. C. R. Claeyssen and V. Schuchman, “Evolution equations of higher order in Banach spaces,” Appl. Anal., 72, No. 3–4, 459–468 (1999).MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    J. C. R. Claeyssen and V. Schuchman, “On the minimal extension of C 0-semigroups for secondorder damped equations,” J. Math. Anal. Appl., 211, No. 1, 213–222 (1997).MathSciNetCrossRefGoogle Scholar
  76. 76.
    J. C. R. Claeyssen and V. Schuchman, “Smooth dynamical solution for the damped second-order equation,” Comput. Appl. Math., 17, No. 2, 121–134 (1998).MathSciNetzbMATHGoogle Scholar
  77. 77.
    W. L. Conradie and N. Sauer, “Empathy, C-semigroups, and integrated semigroups. Evolution equations” (Baton Rouge, LA, 1992), Lecture Notes in Pure and Appl. Math., 168, 123–132 Dekker, New York (1995).Google Scholar
  78. 78.
    Yu. L. Dalecky and N. Yu. Goncharuk, “Random operator functions defined by stochastic differential equations,” In: Measures and Differential Equations in Infinite-Dimensional Space, Proc. Vth Vilnius Conf. Prob. Theory and Math. Stat., 1, 433–445 (1990).Google Scholar
  79. 79.
    Yu. L. Dalecky and N. Yu. Goncharuk, “Supplement to Chapter VII, Stochastic regularization of the ill-posed abstract parabolic problem,” In: Measures and Differential Equations in Infinite-Dimensional Space, by Yu. L. Dalecky and S. V. Fomin with additional material by V. R. Steblovskaya, Yu. V. Bogdansky, and N. Yu. Goncharuk (translated from the Russian), Kluwer Academic Publisher Group, Dordrecht 1991, p. 323–333.Google Scholar
  80. 80.
    G. Da Prato, “R-semigruppi analitici ed equazioni di evoluzione in L p” (Italian), Ric. Mat., 16, 233–249 (1967).zbMATHGoogle Scholar
  81. 81.
    G. Da Prato, “Regolarizzazione di alcuni semigruppi distribuzioni,” (Italian 1966), In: Atti del Convegno su le Equazioni alle Derivate Parziali (Nervi, 1965), Edizioni Cremonese, Rome, pp. 52–54.Google Scholar
  82. 82.
    G. Da Prato, “Semigruppi regolarizzabili,” (Italian) Ricerche Mat., 15, 223–248 (1966).Google Scholar
  83. 83.
    G. Da Prato, “Semigruppi di crescenza n,” Ann. Scuola Norm. Super. Pisa Sci. Fis. Mat., 20, No. 4, 753–782 (1966).MathSciNetzbMATHGoogle Scholar
  84. 84.
    G. Da Prato and U. Mosco, “Regolarizzazione dei semigruppi distribuzioni analitici” (Italian), Ann. Scuola Norm. Sup. Pisa (3), 19, 563–576 (1965).Google Scholar
  85. 85.
    E. B. Davies and M. M. H. Pang, “The Cauchy problem and a generalization of the Hille–Yosida theorem,” Proc. London Math. Soc. (3), 55, No. 1, 181–208 (1987).Google Scholar
  86. 86.
    C. R. Day, “Spectral mapping theorems for fractionally integrated semigroups,” Thesis (Ph.D.), University of South Carolina (1992), 37 pp.Google Scholar
  87. 87.
    C. R. Day, “Spectral mapping theorem for integrated semigroups,” Semigroup Forum, 47, No. 3, 359–372 (1993).Google Scholar
  88. 88.
    Sh. Q. Du and Q. R. Liu, “The relations between the spectra of C-semigroups and the spectra of their generators” (Chinese), Pure Appl. Math. (Xi’an), 11, No. 1, 56–60 (1995).Google Scholar
  89. 89.
    A. Ducrot, P. Magal, and K. Prevost, “Integrated semigroups and parabolic equations, Part I: Linear perturbation of almost sectorial operators,” J. Evol. Equ., 10, No. 2, 263–291 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    O. El-Mennaoui, “Asymptotic behaviour of integrated semigroups,” J. Comput. Appl. Math., 54, No. 3, 351–369 (1994).MathSciNetCrossRefGoogle Scholar
  91. 91.
    Huang Falun and Huang Tingwen, “Local C-cosine family theory and application,” Chin. Ann. Math., Ser. B, 16, No. 2, 213–232 (1995).Google Scholar
  92. 92.
    H. O. Fattorini, Second-Order Linear Diferential Equations in Banach Spaces, North-Holland, Amsterdam (1985).Google Scholar
  93. 93.
    V. E. Fedorov, “A class of second-order equations of Sobolev type and degenerate groups of operators,” Vestn. Chelyab. Gos. Univ. Mat. Mekh. Inform., No. 26(13), 59–75, 122 (2011).Google Scholar
  94. 94.
    V. E. Fedorov, “Properties of pseudoresolvents and conditions for the existence of degenerate operator semigroups,” Vestn. Chelyab. Gos. Univ. Mat. Mekh. Inform., No. 20(11), 12–19, 153 (2009).Google Scholar
  95. 95.
    V. E. Fedorov, “Holomorphic operator semigroups with strong degeneration,” Vestn. Chelyab. Gos. Univ. Mat. Mekh. Inform., No. 6(10), 68–74, 138 (2008).Google Scholar
  96. 96.
    V. E. Fedorov, “Holomorphic resolving semigroups of Sobolev-type equations in locally convex spaces,” Mat. Sb., 195, No. 8, 131–160 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    V. E. Fedorov, “Application of the theory of degenerate semigroups of operators to the study of initial-boundary value problems,” Sovrem. Mat. Prilozh. No. 9, 164–169 (2003).Google Scholar
  98. 98.
    V. E. Fedorov, “The Yosida theorem and solution groups of Sobolev-type equations in locally convex spaces,” Vestn. Chelyab. Univ. Ser. 3 Mat. Mekh. Inform., No. 3(9), 197–214 (2003).Google Scholar
  99. 99.
    V. E. Fedorov, “On a generalization of the Phillips formula,” In: Mathematics. Mechanics. Information science [in Russian], Chelyab. Gos. Univ., Chelyabinsk (2006), pp. 211–219.Google Scholar
  100. 100.
    V. E. Fedorov, “A generalization of the Hille–Yosida theorem to the case of degenerate semigroups in locally convex spaces,” Sib. Mat. Zh, 46, No. 2, 426–448 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    V. E. Fedorov, “Strongly holomorphic groups of Sobolev-type linear equations in locally convex spaces,” Differ. Uravn., 40, No. 5, 702–712, 720 (2004).Google Scholar
  102. 102.
    V. E. Fedorov, “Relaxed solutions of a Sobolev-type linear equation and semigroups of operators,” Izv. Ross. Akad. Nauk Ser. Mat., 67, No. 4, 171–188 (2003).MathSciNetCrossRefGoogle Scholar
  103. 103.
    V. E. Fedorov, “Units of degenerate analytic operator semigroups and relative p-sectoriality,” In: Sobolev-type equations [in Russian], Chelyab. Gos. Univ., Chelyabinsk (2002), pp. 138–155.Google Scholar
  104. 104.
    V. E. Fedorov, “On the smoothness of solutions of linear Sobolev-type equations,” Differ. Uravn., 37, No. 12, 1646–1649, 1726 (2001).Google Scholar
  105. 105.
    V. E. Fedorov, “Degenerate strongly continuous semigroups of operators,” Algebra Anal., 12, No. 3, 173–200 (2000).MathSciNetGoogle Scholar
  106. 106.
    V. E. Fedorov, “Degenerate strongly continuous groups of operators,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 3, 54–65 (2000).Google Scholar
  107. 107.
    V. E. Fedorov and P. N. Davydov, “On nonlocal solutions of semilinear equations of the Sobolev type,” Differ. Equ., 49, No. 3, 326–335 (2013).MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    V. E. Fedorov and P. N. Davydov, “Global solvability of some Sobolev-type semilinear equations,” Vestn. Chelyab. Gos. Univ. Mat. Mekh. Inform., No. 23(12), 80–87, 134 (2010).Google Scholar
  109. 109.
    V. E. Fedorov and E. A. Omel’chenko, “Inhomogeneous linear equations of Sobolev type with delay, Sib. Mat. Zh., 53, No. 2, 418–429 (2012).Google Scholar
  110. 110.
    V. E. Fedorov and M. V. Plekhanova, “Optimal control of Sobolev-type linear equations,” Differ. Uravn., 40, No. 11, 1548–1556, 1583 (2004).Google Scholar
  111. 111.
    V. E. Fedorov and O. A. Ruzakova, “On the solvability of perturbed Sobolev-type equations,” Algebra Anal., 20, No. 4, 189–217 (2008).MathSciNetzbMATHGoogle Scholar
  112. 112.
    V. E. Fedorov and O. A. Ruzakova, “One- and two-dimensional controllability of Sobolev-type equations in Banach spaces,” Mat. Zametki, 74, No. 4, 618–628 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    V. E. Fedorov and O. A. Ruzakova, “One-dimensional controllability of Sobolev-type linear equations in Hilbert spaces,” Differ. Uravn., 38, No. 8, 1137–1139, 1152 (2002).Google Scholar
  114. 114.
    V. E. Fedorov and O. A. Ruzakova, “Controllability of Sobolev-type linear equations with relatively p-radial operators,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 7, 54–57 (2002).Google Scholar
  115. 115.
    V. E. Fedorov and M. A. Sagadeeva, “Solutions, bounded on the line, of Sobolev-type linear equations with relatively sectorial operators,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 4, 81–84 (2005).Google Scholar
  116. 116.
    V. E. Fedorov and B. Shklyar, “Exact null controllability of degenerate evolution equations with scalar control,” Mat. Sb., 203, No. 12, 137–156 (2012).MathSciNetzbMATHCrossRefGoogle Scholar
  117. 117.
    V. E. Fedorov and A. V. Urazaeva, “An inverse problem for linear Sobolev type equations,” J. Inverse Ill-Posed Probl., 12, No. 4, 387–395 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  118. 118.
    V. E. Fedorov, A. V. Panov, and A. S. Karabaeva, “Symmetries of a class of quasilinear equations of pseudoparabolic type: invariant solutions,” Vestn. Chelyab. Gos. Univ. Mat. Mekh. Inform., No. 26(15), 90–111, 141 (2012).Google Scholar
  119. 119.
    A. Filinkov and I. Maizurna, “Integrated solutions of stochastic evolution equations with additive noise,” Bull. Austral. Math. Soc., 64, No. 2, 281–290 (2001).MathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    J. Fountain and V. Gould, “Idempotent bounded C-semigroups,” Monatsh. Math., 117, No. 3–4, 237–254 (1994).MathSciNetzbMATHCrossRefGoogle Scholar
  121. 121.
    J. E. Galé, M. M. Martinez, and P. J. Miana, “Katznelson–Tzafriri type theorem for integrated semigroups,” J. Operator Theory, 69, No. 1, 59–85 (2013).MathSciNetzbMATHCrossRefGoogle Scholar
  122. 122.
    D-Zh. Gao, “The Lumer–Phillips theorems for integrated semigroups,” Acta Anal. Funct. Appl., 3, No. 4, 294–299 (2001).Google Scholar
  123. 123.
    D.-Zh. Gao, “On representation of integrated semigroups and application to abstract integrodifferential equation,” Acta Anal. Funct. Appl., 4, No. 4, 333–342 (2002).MathSciNetzbMATHGoogle Scholar
  124. 124.
    M. Gao, “C-well-posedness of the complete second order abstract Cauchy problem and applications,” Acta Math. Sin. (Engl. Ser.), 15, No. 4, 535–548 (1999).MathSciNetzbMATHCrossRefGoogle Scholar
  125. 125.
    M. Gao, “Local C-semigroups and local C-cosine functions,” Acta Math. Sci. (English Ed.), 19, No. 2, 201–213 (1999).MathSciNetzbMATHCrossRefGoogle Scholar
  126. 126.
    M. Gao, “Holomorphic integrated mild C-existence families,” Acta Math. Sci. (English Ed.), 18, No. 1, 63–73 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  127. 127.
    M. Gao, “Mild integrated C-existence families and abstract Cauchy problems,” Northeast. Math. J., 14, No. 1, 95–104 (1998).MathSciNetzbMATHGoogle Scholar
  128. 128.
    X. Genqi and F. Dexing, “Some properties of integrated besemigroups,” Acta Math. Sci. Ser. B. Engl. Ed., 21B(1), 50–60 (2001).zbMATHGoogle Scholar
  129. 129.
    J. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, Oxford (1985).zbMATHGoogle Scholar
  130. 130.
    F. Z. Gong and Q. R. Liu, “C-semigroups and C 0-semigroups,” Pure Appl. Math. (Xi’an), 12, No. 1, 78–80 (1996).Google Scholar
  131. 131.
    Charles W. Groetsch, “Stable approximate evaluation of unbounded operators,” Lecture Notes in Math., 1894, Springer, Berlin (2007).Google Scholar
  132. 132.
    R. Grimmer and J. H. Liu, “Integrated semigroups and integrodifferential equations,” Semigroup Forum, 48, No. 1, 79–95 (1994).Google Scholar
  133. 133.
    G. Greiner and M. M¨uller, “The spectral mapping theorem for integrated semigroups,” Semigroup Forum, 47, No. 1, 115–122 (1993).Google Scholar
  134. 134.
    X. H. Gu and F. Huang, “Characterization of almost automorphic C-semigroups and S p-almost periodic C-semigroups,” Sichuan Daxue Xuebao (Chinese), 38, No. 2, 137–140 (2001).Google Scholar
  135. 135.
    X. Gu, M. Li, and F. Huang, “Almost periodicity of C-semigroups, integrated semigroups and C-cosine functions,” Stud. Math., 150, No. 2, 189–200 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  136. 136.
    X. J. Gui and Q. R. Liu, “The relation between C-semigroups and C 0-semigroups,” Pure Appl. Math. (Xi’an), 9, No. 1, 47–50 (1993).Google Scholar
  137. 137.
    D. Guidetti, B. Karasozen, and S. Piskarev, “Approximation of abstract differential equations,” J. Math. Sci., Vol. 122, No. 2, 3013–3054 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  138. 138.
    S. Guozheng, “α times integrated semigroups and abstract Cauchy problem,” Acta Math. Sinica, 42, No. 4, 757–762 (1999).MathSciNetzbMATHGoogle Scholar
  139. 139.
    K. S. Ha, “Spectral mapping theorems for exponentially bounded C-semigroups in Banach spaces. Semigroups and differential operators,” (Oberwolfach, 1988), Semigroup Forum, 38, No. 2, 215–221 (1989).Google Scholar
  140. 140.
    K. S. Ha, J. H. Kim, and J. K. Kim, “Linear abstract Cauchy problem associated with an exponentially bounded C-semigroup in a Banach space,” Bull. Korean Math. Soc., 27, No. 2, 157–164 (1990).MathSciNetzbMATHGoogle Scholar
  141. 141.
    Z. B. Han, Y. Z. Huang, and M. Jian, “Inverse problems for equations of parabolic type. Perspectives in mathematical sciences,” Interdiscip. Math. Sci., 9, 1–21, World Scientific Publishing Co. (2010).Google Scholar
  142. 142.
    M. He, “Differentiability with respect to parameters of integrated semigroups. Direct and inverse problems of mathematical physics,” (Newark, DE, 1997), Int. Soc. Anal. Appl. Comput., 5, 125–135, Kluwer Acad. Publ., Dordrecht (2000).Google Scholar
  143. 143.
    M. He, “Integrated semigroups and vibrating string problem,” Appl. Anal., 68, No. 1-2, 109–120 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  144. 144.
    M. He, “On continuity in parameter of integrated semigroups. Dynamical systems and differential equations,” (Wilmington, NC, 2002), Discrete Contin. Dyn. Syst., suppl., 403–412 (2003).Google Scholar
  145. 145.
    M. Helil and M. Rixit, “Integrated semigroups and well-posedness of several queueing models,” J. Xinjiang Univ. Natur. Sci. (Chinese), 19, No. 4, 394–400 (2002).MathSciNetGoogle Scholar
  146. 146.
    M. Hieber, “L p spectra of pseudodifferential operators generating integrated semigroups,” Trans. Am. Math. Soc., 347, No. 10, 4023–4035 (1995).MathSciNetzbMATHGoogle Scholar
  147. 147.
    M. Hieber, “Integrated semigroups and differential operators on L p spaces,” Math. Ann., 291, No. 1, 1–16 (1991).MathSciNetzbMATHCrossRefGoogle Scholar
  148. 148.
    M. Hieber, “Integrated semigroups and the Cauchy problem for systems in L p spaces,” J. Math. Anal. Appl., 162, No. 1, 300–308 (1991).MathSciNetzbMATHCrossRefGoogle Scholar
  149. 149.
    M. Hieber, “Laplace transforms and α times integrated semigroups,” Forum Math., 3, No. 6, 595–612 (1991).MathSciNetzbMATHGoogle Scholar
  150. 150.
    M. Hieber, Holderriech, and F. Neubrander, “Regularized semigroups and systems of linear partial differential equations,” Ann. Scu. Norm. Super. Pisa, 19, No. 3, 363–379 (1992).Google Scholar
  151. 151.
    E. Hille and R. S. Phillips, “Functional analysis and semigroups,” Am. Math. Soc. Providence, Rhode Island (1957).Google Scholar
  152. 152.
    R. H. W. Hoppe, “Discrete approximations of cosine operator functions. I,” SIAM J. Numer. Anal., 19, 1110–1128 (1982).MathSciNetzbMATHCrossRefGoogle Scholar
  153. 153.
    Zh. Hu and Zh. Jin, “Hille–Yosida type theorems for O(ω(t)) n times integrated semigroups,” Nonlinear Anal., 71, No. 1-2, 521–530 (2009).Google Scholar
  154. 154.
    M. Hu, X. Q. Song, W. Wei, and X. Z. Zhang, “Representation theorem of n times integrated C-semigroups,” J. Shandong Univ. Sci. Technol. Nat. Sci., 23, No. 4, 89–91 (2004).MathSciNetGoogle Scholar
  155. 155.
    Y. Z. Huang, “Modified quasi-reversibility method for final value problems in Banach spaces,” J. Math. Anal. Appl., 340, 757–769 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  156. 156.
    Y. Z. Huang and Z. Quan, “Regularization for ill-posed Cauchy problems associated with generators of analytic semigroups,” J. Differ. Equ., 203, 38–54 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  157. 157.
    Y. Z. Huang and Z. Quan, “Regularization for a class of ill-posed Cauchy problems,” Proc. Am. Math. Soc., 133, No. 10, 3005–3012 (2006).MathSciNetzbMATHCrossRefGoogle Scholar
  158. 158.
    Y. Z. Huang and Z. Quan, “Weak regularization for a class of ill-posed Cauchy problems,” Acta Math. Sci., 26B, No. 3, 483–490 (2006).MathSciNetzbMATHCrossRefGoogle Scholar
  159. 159.
    Z. Huang and H. Wang, “The integrated C-semigroup and its spectral mapping theorem,” Nanjing Daxue Xuebao Ziran Kexue Ban, 32, No. 3, 369–377 (1996).Google Scholar
  160. 160.
    R. J. Hughes, “Semigroups of unbounded linear operators in Banach space,” Trans. Am. Math. Soc., V. 230, 113–145 (1977).Google Scholar
  161. 161.
    N. D. Ivanova, V. E. Fedorov, and K. M. Komarova, “The nonlinear inverse problem for the Oskolkov system linearized in a neighborhood of a stationary solution,” Vestn. Chelyab. Gos. Univ. Mat. Mekh. Inform., No. 26(15), 49–70, 140 (2012).Google Scholar
  162. 162.
    M. Jackson and T. Stokes, “An invitation to C-semigroups,” Semigroup Forum, 62, No. 2, 279–310 (2001).Google Scholar
  163. 163.
    D. H. Jeong, J. Y. Park, and J.-W. Yu, “Exponentially equi-continuous C-semigroups in locally convex space,” J. Korean Math. Soc., 26, No. 1, 1–15 (1989).MathSciNetzbMATHGoogle Scholar
  164. 164.
    Y. F. Jia and H. X. Cao, “Characterization of exponentially bounded C-semigroups by infinitesimal generators,” J. Gansu Univ. Technol., 29, No. 2, 121–123 (2003).MathSciNetzbMATHGoogle Scholar
  165. 165.
    C. Kaiser, “Integrated semigroups and linear partial differential equations with delay,” J. Math. Anal. Appl., 292, No. 2, 328–339 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  166. 166.
    C. Kaiser and L. Weis, “Perturbation theorems for α times integrated semigroups,” Arch. Math., (Basel), 81, No. 2, 215–228 (2003).Google Scholar
  167. 167.
    S. Kalabušić and F. Vajzović, “Exponential formula for one-time integrated semigroups,” Novi Sad J. Math., 33, No. 2, 77–88 (2003).MathSciNetzbMATHGoogle Scholar
  168. 168.
    S. Kantorovitz, “Semigroups of operators and spectral theory,” Pitman Res. Notes Math. Ser., 330 (1995).Google Scholar
  169. 169.
    Shmuel Kantorovitz, “The Hille–Yosida space of an arbitrary operator,” J. Math. Anal. Appl., 136, No. 1, 107–111 (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  170. 170.
    T. Kato, “Perturbation theory for linear perators,” Classics in Mathematics, Springer-Verlag, Berlin (1995).Google Scholar
  171. 171.
    H. Kellerman, “Integrated semigroups,” Dissertatiòn universität Tübingen (1986).Google Scholar
  172. 172.
    H. Kellerman and M. Hieber, “Integrated semigroups,” J. Funct. Anal., 84, No. 1, 160–180 (1989).MathSciNetzbMATHCrossRefGoogle Scholar
  173. 173.
    V. Keyantuo, “Integrated semigroups and related partial differential equations,” J. Math. Anal. Appl., 212, No. 1, 135–153 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  174. 174.
    A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam (2006).zbMATHGoogle Scholar
  175. 175.
    A. N. Kochubei, “A Cauchy problem for evolution equations of fractional order,” Differential Equations, 25, 967–974 (1989).MathSciNetGoogle Scholar
  176. 176.
    M. Y. Kokurin, “On a multidimensional integral equation with data supported by low-dimensional analytic manifolds,” J. Inverse Ill-Posed Probl., 21, No. 1, 125–140 (2013).MathSciNetzbMATHCrossRefGoogle Scholar
  177. 177.
    M. Yu. Kokurin, “On a correlation method for investigating random wave fields,” Sib. Zh. Ind. Mat., 14, No. 4, 24–31 (2011).MathSciNetzbMATHGoogle Scholar
  178. 178.
    M. Yu. Kokurin, “An exact penalty method for monotone variational inequalities and orderoptimal algorithms for finding saddle points,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 8, 23–33 (2011).Google Scholar
  179. 179.
    M. M. Kokurin, “Difference schemes for solving the Cauchy problem for a second-order operator differential equation,” Comput. Math. Math. Phys., 54, No. 4, 582–597 (2014).MathSciNetzbMATHCrossRefGoogle Scholar
  180. 180.
    M. Kokurin and V. Kljuchev, “Necessary and sufficient conditions for logarithmic convergence of regularization methods for solving inverse Cauchy problem in Banach space,” J. Inverse Ill-Posed Probl., 14, No. 5, 481–504 (2006).MathSciNetzbMATHCrossRefGoogle Scholar
  181. 181.
    M. Kostić, “Differential and analytical properties of semigroups of operators,” Integral Equations Operator Theory, 67, No. 4, 499–557 (2010).Google Scholar
  182. 182.
    M. Kostić, “Generalized semigroups and cosine functions,” Posebna Izdan., 23, vi+352 (2011).Google Scholar
  183. 183.
    M. Kostić, “On analytic integrated semigroups,” Novi Sad J. Math., 35, No. 1, 127–135 (2005).MathSciNetzbMATHGoogle Scholar
  184. 184.
    M. Kostic, Abstract Volterra Integro-Differential Equations, Boca Raton, FL: CRC Press (ISBN 978-1-4822-5430-3/hbk; 978-1-4822-5431-0/ebook), xxv, 458 p. (2015).Google Scholar
  185. 185.
    V. A. Kostin, “The Cauchy problem for an abstract differential equation with fractional derivatives,” Dokl. Ross. Akad. Nauk, 326, No. 4, 597–600 (1992).Google Scholar
  186. 186.
    T. Kowalski and W. Sadkowski, “Applications of C-groups to existence of solutions of some mixed problems,” Demonstr. Math., 31, No. 2, 477–484 (1998).MathSciNetzbMATHGoogle Scholar
  187. 187.
    T. Kowalski and W. Sadkowski, “Applications of integrated semigroups for control theory,” Int. J. Differ. Equ. Appl., 7, No. 2, 123–139 (2003).MathSciNetzbMATHGoogle Scholar
  188. 188.
    T. Kowalski and W. Sadkowski, “Application of once integrated semigroups for the abstract boundary control,” Int. J. Pure Appl. Math., 36, No. 1, 13–26 (2007).MathSciNetzbMATHGoogle Scholar
  189. 189.
    T. Kowalski and W. Sadkowski, “The null-exact controllability of the generalized wave problem governed by once integrated semigroups,” Demonstr. Math., 37, No. 3, 745–760 (2004).MathSciNetzbMATHGoogle Scholar
  190. 190.
    M. A. Krasnosel’sky, I. V. Emelin, and V. S. Kozjakin, “On iterative procedures in linear problems,” Preprint. Institute of Control, Moscow (1979).Google Scholar
  191. 191.
    R. Kravarušić and M. Mijatović, “Integrated C-semigroups of unbounded linear operators in Banach spaces,” Novi Sad J. Math., 35, No. 2, 1–17 (2005).MathSciNetzbMATHGoogle Scholar
  192. 192.
    R. Kravarušić, M. Mijatović, and S. Pilipović, “Integrated semigroups of unbounded linear operators and C 0-semigroups on subspaces,” Mat. Vesnik, 54, 117–124 (2002).MathSciNetzbMATHGoogle Scholar
  193. 193.
    R. Kravarušić, M. Mijatović, and S. Pilipović, “Integrated semigroups of unbounded linear operators,” Filomat, No. 15, 197–210 (2001).Google Scholar
  194. 194.
    R. Kravarušić, M. Mijatović, and S. Pilipović, “Integrated semigroup of unbounded linear operators. Cauchy problem. II,” Novi Sad J. Math., 28, No. 1, 107–122 (1998).MathSciNetzbMATHGoogle Scholar
  195. 195.
    R. Kravarušić, M. Mijatović, and S. Pilipović, “Integrated semigroups of unbounded linear operators in Banach spaces. I,” Bull. Cl. Sci. Math. Nat. Sci. Math., 23, 45–62 (1998).MathSciNetzbMATHGoogle Scholar
  196. 196.
    R. Kravarušić, M. Mijatović, and S. Pilipović, “Integrated semigroups of unbounded linear operators and C 0-semigroups on subspaces,” Proceedings of the 5th International Symposium on Mathematical Analysis and its Applications, Nauka Banja, 2002, Mat. Vesnik, 54, No. 3–4, 117–124 (2002).Google Scholar
  197. 197.
    S. G. Krein “Linear differential equations in Banach space,” Am. Math. Soc., Providence, R.I. (1971).Google Scholar
  198. 198.
    Ch.-Ch. Kuo, “On existence and approximation of solutions of abstract Cauchy problem,” Taiwan. J. Math., 13, No. 1, 137–155 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  199. 199.
    Ch.-Ch. Kuo, “On exponentially bounded α times integrated C-cosine functions,” Yokohama Math. J., 52, No. 1, 59–72 (2005).MathSciNetzbMATHGoogle Scholar
  200. 200.
    Ch.-Ch. Kuo, “On perturbation of α times integrated C-semigroups,” Taiwan. J. Math., 14, No. 5, 1979–1992 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  201. 201.
    Ch.-Ch. Kuo, “Perturbation theorems for local integrated semigroups,” Stud. Math., 197, No. 1, 13–26 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  202. 202.
    Ch.-Ch. Kuo and S.-Y. Shaw, “C-cosine functions and the abstract Cauchy problem. I, II,” J. Math. Anal. Appl., 210, No. 2, 632–666 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  203. 203.
    Ch.-Ch. Kuo and S.-Y. Shaw, “Abstract Cauchy problems associated with local C-semigroups,” In: Semigroups of Operators: Theory and Applications (Rio de Janeiro, 2001), 158–168, Optimization Software, New York (2002).Google Scholar
  204. 204.
    Ch.-Ch. Kuo and S.-Y. Shaw, “On α times integrated C-semigroups and the abstract Cauchy problem,” Stud. Math., 142, No. 3, 201–217 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  205. 205.
    Ch.-Ch. Kuo and S.-Y. Shaw, “Strong and weak solutions of abstract Cauchy problems,” J. Concr. Appl. Math., 2, No. 3, 191–212 (2004).MathSciNetzbMATHGoogle Scholar
  206. 206.
    T. G. Kurtz, “Extensions of Trotter’s operator semigroup approximation theorems,” J. Funct. Anal., 3, 354–375 (1969).MathSciNetzbMATHCrossRefGoogle Scholar
  207. 207.
    K. L. Lang and G. J. Yang, “Local C-semigroups and abstract Cauchy problems,” Math. Appl. (Wuhan), 11, No. 4, 33–37 (1998).MathSciNetzbMATHGoogle Scholar
  208. 208.
    K. Lang and G. Yang, “Trotter–Kato theorems for an α times integrated semigroups,” Chin. Quart. J. Math., 14, No. 3, 11–16 (1999).MathSciNetzbMATHGoogle Scholar
  209. 209.
    R. de Laubenfels, “Existence families, functional calculi and evolution equations,” Lecture Notes in Math., 1570, Springer-Verlag (1994).Google Scholar
  210. 210.
    R. de Laubenfels, “C-semigroups and strongly continuous semigroups,” Israel J. Math., 81, No. 1–2, 227–255 (1993).MathSciNetCrossRefGoogle Scholar
  211. 211.
    R. de Laubenfels, “C-semigroups and the Cauchy problem,” J. Funct. Anal., 111, No. 1, 44–61 (1993).MathSciNetCrossRefGoogle Scholar
  212. 212.
    R. de Laubenfels “Existence and uniquness families for the abstract Cauchy problem,” J. London Math. Soc., 44(2), 310–338 (1991).MathSciNetCrossRefGoogle Scholar
  213. 213.
    Ralph De Laubenfels, “Inverses of generators,” Proc. Am. Math. Soc., 104, No. 2, 443–448 (1988).MathSciNetCrossRefGoogle Scholar
  214. 214.
    R. de Laubenfels, “Holomorphic C-existence families,” Tokyo J. Math., 15, No. 1, 17–38 (1992).MathSciNetCrossRefGoogle Scholar
  215. 215.
    R. de Laubenfels, “Integrated semigroups and integrodifferential equations,” Math. Z., 204, No. 4, 501–514 (1990).MathSciNetCrossRefGoogle Scholar
  216. 216.
    R. de Laubenfels, “Inverses of generators of integrated or regularized semigroups,” Semigroup Forum,” 75, No. 2, 457–463 (2007).Google Scholar
  217. 217.
    R. de Laubenfels, “Integrated semigroups, C-semigroups and the abstract Cauchy problems,” Semigroups Forum, 41, No. 1, 83–95 (1990).Google Scholar
  218. 218.
    R. de Laubenfels, “Polynomials of generators of integrated semigroups,” Proc. Am. Math. Soc., 107, No. 1, 197–204 (1989).MathSciNetCrossRefGoogle Scholar
  219. 219.
    R. de Laubenfels and M. Jazar, “Functional calculi, regularized semigroups and integrated semigroups,” Stud. Math., 132, No. 2, 151–172 (1999).MathSciNetzbMATHCrossRefGoogle Scholar
  220. 220.
    M. M. Lavrent’ev, Über gewisse inkorrekte Aufgaben der mathematischen Physik [in Russian], Verlag der Sibirischen Abteilung der Akademie der Wissenschaften der UdSSR, Novosibirsk (1962).Google Scholar
  221. 221.
    Y. S. Lee, “Exponential formula for exponentially bounded C-semigroups,” Bull. Korean Math. Soc., 35, No. 1, 45–52 (1998).MathSciNetzbMATHGoogle Scholar
  222. 222.
    Y. S. Lei and Q. Zheng, “Adjoint semigroups of exponentially bounded C-semigroups,” Math. Appl. (Wuhan), 6, suppl., 154–159 (1993).Google Scholar
  223. 223.
    Y. S. Lei and Q. Zheng, “Exponentially bounded C-semigroups and integrated semigroups with non-densely defined generators. II. Perturbations,” Acta Math. Sci. (Chinese), 13, No. 4, 428–434 (1993).Google Scholar
  224. 224.
    Y. S. Lei and Q. Zheng, “The application of C-semigroups to differential operators in L p(ℝn),” J. Math. Anal. Appl., 188, No. 3, 809–818 (1994).Google Scholar
  225. 225.
    L. D. Lemle, “Une formule exponentielle pour les semi-groupes intégrés” (French) [An exponential formula for integrated semigroups], In: Proceedings of the Tenth Symposium of Mathematics and its Applications, 102–109, Rom. Acad., Timi,soara (2003).Google Scholar
  226. 226.
    X. L. Li, “Right local left C-semigroup,” J. Lanzhou Univ. Nat. Sci., 44, No. 5, 94–98 (2008).MathSciNetzbMATHGoogle Scholar
  227. 227.
    Y. Li, “Differentiable, entire vectors and abstract Cauchy problems,” Nanjing Daxue Xuebao Ziran Kexue Ban, 33, No. 2, 161–168 (1997).Google Scholar
  228. 228.
    Y. R. Li, “Contraction integrated semigroups and their application to continuous-time Markov chains,” In: International Workshop on Operator Algebra and Operator Theory (Linfen, 2001), Acta Math. Sin. (Engl. Ser.), 19, No. 3, 605–618 (2003).Google Scholar
  229. 229.
    M. Li and F. Huang, “Characterizations of contraction C-semigroups,” Proc. Am. Math. Soc., 126, No. 4, 1063–1069 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  230. 230.
    M. Li and F. Huang, “Singular regularized semigroups and integrated semigroups,” Sichuan Daxue Xuebao, 38, No. 6, 781–787 (2001).Google Scholar
  231. 231.
    M. Li and S. Piskarev, “On approximation of integrated semigroups,” Taiwan. J. Math., 14, No. 6, 2137–2161 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  232. 232.
    Y. Li and J. Li, “Markov integrated semigroups and their applications to continuous-time Markov chains,” Integral Equations Operator Theory, 60, No. 2, 247–269 (2008).Google Scholar
  233. 233.
    Y.-Ch. Li and S.-Y. Shaw, “Infinite differentiability of Hermitian and positive C-semigroups and C-cosine functions,” Publ. Res. Inst. Math. Sci., 34, No. 6, 579–590 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  234. 234.
    Y.-Ch. Li and S.-Y. Shaw, “Hermitian and positive C-semigroups on Banach spaces,” Publ. Res. Inst. Math. Sci., 31, No. 4, 625–644 (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  235. 235.
    Y.-Ch. Li and S.-Y. Shaw, “Hermitian and positive integrated C-cosine functions on Banach spaces,” Positivity, 2, No. 3, 281–299 (1998).Google Scholar
  236. 236.
    Y.-Ch. Li and S.-Y. Shaw, “Integrated C-semigroups and C-cosine functions of Hermitian and positive operators,” In: Semigroups of Operators: Theory and Applications (Newport Beach, CA, 1998), 174–183; Progr. Nonlinear Differ. Equ. Appl., 42, Birkhäuser, Basel (2000).Google Scholar
  237. 237.
    Y.-C. Li and S.-Y. Shaw, “N times integrated C-semigroups and the abstract Cauchy problem”, Taiwan. J. Math., 1, No. 1, 75–102 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  238. 238.
    Y.-Ch. Li and S.-Y. Shaw, “On characterization and perturbation of local C-semigroups,” Proc. Am. Math. Soc., 135, No. 4, 1097–1106 (2007) (electronic).Google Scholar
  239. 239.
    Y.-Ch. Li and S.-Y. Shaw, “On generators of integrated C-semigroups and C-cosine functions,” Semigroup Forum, 47, No. 1, 29–35 (1993).Google Scholar
  240. 240.
    Y.-Ch. Li and S.-Y. Shaw, “On local α times integrated C-semigroups,” Abstr. Appl. Anal., Art. ID 34890, 18 pp. (2007).Google Scholar
  241. 241.
    Y.-Ch. Li and S.-Y. Shaw, “Perturbation of non-exponentially-bounded α times integrated C-semigroups,” J. Math. Soc. Jpn., 55, No. 4, 1115–1136 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  242. 242.
    M. Li and Q. Zheng, “α times integrated semigroups: local and global,” Stud. Math., 154, No. 3, 243–252 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  243. 243.
    M. Li and Q. Zheng, “Extrapolation spaces for C-semigroups,” Proc. Am. Math. Soc., 137, No. 2, 663–668 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  244. 244.
    M. Li and Q. Zheng, “On the product formulas for C-semigroups,” Semigroup Forum, 78, No. 3, 536–546 (2009).Google Scholar
  245. 245.
    M. Li, F.-L. Huang, and X.-L. Chu, “Ergodic theory for C-semigroups,” Sichuan Daxue Xuebao, 36, No. 4, 645–651 (1999).Google Scholar
  246. 246.
    M. Li, F.-L. Huang, and Q. Zheng, “Local integrated C-semigroups,” Stud. Math., 145, No. 3, 265–280 (2001).MathSciNetzbMATHCrossRefGoogle Scholar
  247. 247.
    Miao Li, Vladimir Morozov, and Sergey Piskarev, “On the approximations of derivatives of integrated semigroups II,” J. Inverse Ill-posed Probl., Vol. 19, Issue 3–4, 643–688 (2011).MathSciNetzbMATHGoogle Scholar
  248. 248.
    M. Li, V. Morozov, and S. Piskarev, “On the approximations of derivatives of integrated semigroups,” J. Inverse Ill-Posed Probl., 18, No. 5, 515–550 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  249. 249.
    F. Li, H. Wang, and Z. Qu, “Some results on n times integrated C-regularized semigroups,” Adv. Differ. Equ., Art. ID 394584, 9 p. (2011).Google Scholar
  250. 250.
    J. Liang and T. Xiao, “Integrated semigroups and higher order abstract equations,” J. Math. Anal. Appl., 222, No. 1, 110–125 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  251. 251.
    J. Liang and T. Xiao, “Well-posedness results for certain classes of higher order abstract Cauchy problems connected with integrated semigroups,” Semigroup Forum, 56, No. 1, 84–103 (1998).Google Scholar
  252. 252.
    L. Lin and X. Zeng, “Locally saturation theorem for probabilistic representation formulas of C-semigroups,” J. Math. Study, 28, No. 3, 93–98 (1995).MathSciNetzbMATHGoogle Scholar
  253. 253.
    Q. Lin, “Probabilistic approximation for C-semigroups,” Math. Pract. Theory, 38, No. 3, 123–129 (2008).MathSciNetzbMATHGoogle Scholar
  254. 254.
    J. L. Lions, “Semi-groupes distributions,” Port. Math., 19, 141–164 (1960).MathSciNetzbMATHGoogle Scholar
  255. 255.
    H. Liu and S.-Y. Shaw, “Rates of local ergodic limits of n times integrated solution families,” In: Semigroups of Operators: Theory and Applications (Newport Beach, CA, 1998), 192–202; Progr. Nonlinear Differential Equations Appl., 42, Birkhäuser, Basel (2000).Google Scholar
  256. 256.
    J. H. Liu, X. Q. Song, and W. Zhou, “Local C-semigroups and weak solutions of an abstract Cauchy problem,” Math. Pract. Theory, 39, No. 17, 123–127 (2009).MathSciNetGoogle Scholar
  257. 257.
    M. Liu, D.-Q. Liao, Q.-Q. Zhu, and F.-H. Wang, “α times integrated C-semigroups,” Adv. Pure Math., 2, 211–215 (2012).zbMATHCrossRefGoogle Scholar
  258. 258.
    M. Liu, X. Q. Song, and R. Rong, “Perturbation of n times integrated C-semigroups,” J. Xuzhou Norm. Univ. Nat. Sci. Ed. (Chinese), 23, No. 3, 10–14 (2005).MathSciNetzbMATHGoogle Scholar
  259. 259.
    Q. R. Liu and X. F. Gui, “Some properties of integrated C-semigroups and their application to abstract Cauchy problems,” J. Northwest Univ., 24, No. 1, 1–5 (1994).MathSciNetGoogle Scholar
  260. 260.
    Q. R. Liu and H. X. Zhao, “Local integrated C-semigroups and the abstract Cauchy problems. I,” J. Northwest Univ., 24, No. 5, 381–386 (1994).MathSciNetzbMATHGoogle Scholar
  261. 261.
    Y. Liu, J.-R. Qiang, and M. Li, “Perturbations of α times integrated semigroups,” Sichuan Daxue Xuebao, 47, No. 5, 973–976 (2010).Google Scholar
  262. 262.
    Zh. Liu, P. Magal, and Sh. Ruan, “Projectors on the generalized eigenspaces for functional differential equations using integrated semigroups,” J. Differ. Equ., 244, No. 7, 1784–1809 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  263. 263.
    M. Liu, Sh. Wang, Q. Yu, and Zh. Wang, “α times integrated C-semigroups and strong solution of abstract Cauchy problem,” Intern. J. Mod. Nonlinear Theory Appl., 2, 164–166 (2013).CrossRefGoogle Scholar
  264. 264.
    C. Lizama, “On the convergence and approximation of integrated semigroups,” J. Math. Anal. Appl., 181, No. 1, 89–103 (1994).MathSciNetzbMATHCrossRefGoogle Scholar
  265. 265.
    F. Long and X. L. Xiang, “Stability of m times integrated semigroups and the mild solution of abstract Cauchy problems,” Acta Anal. Funct. Appl., 3, No. 4, 358–365 (2001).MathSciNetzbMATHGoogle Scholar
  266. 266.
    F. L. Lu, X. Q. Song, and F. H. Wang, “Perturbation of α times integrated semigroups,” Acta Anal. Funct. Appl., 12, No. 3, 254–258 (2010).MathSciNetGoogle Scholar
  267. 267.
    G. Lumer, “Applications des solutions généralisées et semi-groupes intégrés à des problémes d’évolution,” (French) [“Applications of generalized solutions and integrated semigroups to evolution problems”], C. R. Acad. Sci. Paris Sér. I Math., 311, No. 13, 873–878 (1990).Google Scholar
  268. 268.
    G. Lumer, “Examples and results concerning the behavior of generalized solutions, integrated semigroups, and dissipative evolution problems,” In: Semigroup Theory and Evolution Equations (Delft, 1989), 347–356, Lecture Notes in Pure and Appl. Math., 135, Marcel Dekker, New York (1991).Google Scholar
  269. 269.
    G. Lumer, “Generalized evolution operators and (generalized) C-semigroups,” In: Semigroup Theory and Evolution Equations (Delft, 1989), 337–345, Lecture Notes in Pure and Appl. Math., 135, Marcel Dekker, New York (1991).Google Scholar
  270. 270.
    G. Lumer, “Problémes dissipatifs et ‘analytiques’ mal posés: solutions et théorie asymptotique”( French), [“Dissipative and ‘analytic’ ill-posed problems: solutions and asymptotic theory”], C. R. Acad. Sci. Paris Sér. I Math., 312, No. 11, 831–836 (1991).Google Scholar
  271. 271.
    G. Lumer, “Semi-groupes irréguliers et semi-groupes intégrés: application à l’identification de semi-groupes irréguliers analytiques et résultats de génération” (French), [“Irregular semigroups and integrated semigroups: application to the identification of irregular analytic semigroups and generation results”], C. R. Acad. Sci. Paris Sér. I Math., 314, No. 13, 1033–1038 (1992).Google Scholar
  272. 272.
    G. Lumer, “Singular evolution problems, regularization, and applications to phisics, engineering and biology,” Linear Operators Banach Center Publications, V. 38, Institute of mathematics Polish academy of sciences, Warshava (1997), pp. 205–216.Google Scholar
  273. 273.
    G. Lumer, “Solutions généralisées et semi-groupes intégrés” (French), [“Generalized solutions and integrated semigroups”], C. R. Acad. Sci. Paris Sér. I Math., 310, No. 7, 577–582 (1990).Google Scholar
  274. 274.
    P. Magal and Sh. Ruan, “On integrated semigroups and age structured models in L p spaces,” Differ. Integral Equ., 20, No. 2, 197–239 (2007).zbMATHMathSciNetGoogle Scholar
  275. 275.
    A. S. Makarov, “On some classes of generalized and g-integrated semigroups,” Vestn. Chelyabinsk. Univ. Ser. 3 Mat. Mekh., No. 2(5), 48–55 (1999).Google Scholar
  276. 276.
    M. Bachar Mardiyana and W. Desch, “A Trotter–Kato theorem for α times integrated Cregularized semigroups,” Dedicated to István Györi on the occasion of his sixtieth birthday, Funct. Differ. Equ., 11, No. 1-2, 103–110 (2004).Google Scholar
  277. 277.
    T. Matsumoto, “Time-dependent nonlinear perturbations of integrated semigroups,” Nihonkai Math. J., 7, No. 1, 1–28 (1996).MathSciNetzbMATHGoogle Scholar
  278. 278.
    T. Matsumoto, Sh. Oharu, and N. Tanaka, “Time-dependent nonlinear perturbations of analytic and integrated semigroups,” In: Nonlinear Partial Differential Equations and Their Applications, 430–449, GAKUTO Int. Ser. Math. Sci. Appl., 20, Gakkōtosho, Tokyo (2004).Google Scholar
  279. 279.
    T. Matsumoto, Sh. Oharu, and H. R. Thieme, “Nonlinear perturbations of a class ofintegrated semigroups,” Hiroshima Math. J., 26, No. 3, 433–473 (1996).MathSciNetzbMATHGoogle Scholar
  280. 280.
    Zh.-D. Mei, J.-G. Peng, and J.-H. Gao, “Convoluted fractional C-semigroups and fractional abstract Cauchy problems,” Hindawi Publishing Corporation Abstract and Applied Analysis, Volume 2014, Article ID 357821, 9 p.Google Scholar
  281. 281.
    I. V. Melnikova, “Abstract well-posed and ill-posed Cauchy problems for inclusions,” In: Semigroups of Operators: Theory and Applications (Newport Beach, CA, 1998), 203–212, Progr. Nonlinear Differential Equations Appl., 42, Birkhäuser, Basel (2000).Google Scholar
  282. 282.
    I. V. Melnikova, “General theory of the ill-posed Cauchy problem,” J. Inverse Ill-Posed Probl., 3, No. 2, 149–171 (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  283. 283.
    I. V. Melnikova, “Semigroup regularization for ill-posed Cauchy problems,” Semigroups of Operators: Theory and Applications (Rio de Janeiro, 2001), 189–199, Optimization Software, New York (2002).Google Scholar
  284. 284.
    I. V. Melnikova, “Semigroup regularization of differential problems,” Dokl. Akad. Nauk, 393, No. 6, 744–748 (2003).MathSciNetGoogle Scholar
  285. 285.
    I. V. Melnikova, “The abstract Cauchy problem. Semigroup methods, methods for abstract distributions, and regularization methods,” Differential equations (Moscow, 1998), 16–113, In: Progress in Science and Technology, Series on Contemporary Problems in Mathematics andIts Applications, Thematical Surveys [in Russian], Vol. 66, All-Russian Institute for Scientific and Technical Information (VINITI), Ross. Akad. Nauk, Moscow (1999).Google Scholar
  286. 286.
    I. V. Melnikova, “The method of integrated semigroups for Cauchy problems in Banach spaces,” Sib. Mat. Zh., 40, No. 1, 119–129, (1999).MathSciNetGoogle Scholar
  287. 287.
    I. V. Melnikova and M. A. Alshanskiy, “Generalized well-posedness of the Cauchy problem and integrated semigroups,” Dokl. Akad. Nauk, 343, No. 4, 448–451 (1995).MathSciNetGoogle Scholar
  288. 288.
    I. V. Melnikova and M. A. Alshanskiy, “Well-posedness of the Cauchy problem in a Banach space: regular and degenerate cases,” Analysis, 9. J. Math. Sci., 87, No. 4, 3732–3780 (1997).Google Scholar
  289. 289.
    I. V. Melnikova and S. V. Bochkareva, “C-semigroups and the regularization of an ill-posed Cauchy problem,” Dokl. Akad. Nauk, 329, No. 3, 270–273 (1993).MathSciNetGoogle Scholar
  290. 290.
    I. V. Melnikova and A. Filinkov, Abstract Cauchy Problems: Three Approaches, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 120. Chapman & Hall/CRC, Boca Raton, FL, 2001. xxii+236 pp. ISBN: 1–58488–250–6.Google Scholar
  291. 291.
    I. V. Melnikova and A. Filinkov, “Abstract stochastic problems with generators of regularized semigroups,” Commun. Appl. Anal., 13, No. 2, 195–212 (2009).MathSciNetzbMATHGoogle Scholar
  292. 292.
    I. V. Melnikova and A. I. Filinkov, “Integrated semigroups and C-semigroups. Well-posedness and regularization of operator-differential problems,” Usp. Mat. Nauk, 49, No. 6(300), 111–150 (1994).Google Scholar
  293. 293.
    P. J. Miana, “α times integrated semigroups and fractional derivation,” Forum Math., 14, No. 1, 23–46 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  294. 294.
    P. J. Miana, “Local and global solutions of well-posed integrated Cauchy problems,” Stud. Math., 187, No. 3, 219–232 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  295. 295.
    P. J. Miana, “Subordinated holomorphic semigroups to integrated semigroups and groups,” In: Iteration Theory (ECIT ’06), 114–128, Grazer Math. Ber., 351, Institut für Mathematik, Karl-Franzens-Universität Graz, Graz (2007).Google Scholar
  296. 296.
    M. Mijatović and S. Pilipović, “α times integrated semigroups (α ∈ ℝ_),” In: 4th Symposium on Mathematical Analysis and Its Applications (Arandelovac, 1997), Mat. Vesnik, 49, No. 3-4, 153–162 (1997).Google Scholar
  297. 297.
    M. Mijatović and S. Pilipović, “Integrated semigroups and distribution semigroups — Cauchy problem,” Math. Montisnigri, 11, 43–65 (1999).MathSciNetzbMATHGoogle Scholar
  298. 298.
    M. Mijatović and S. Pilipović, “Integrated semigroups, relations with generators,” Novi Sad J. Math., 27, No. 2, 65–75 (1997).MathSciNetzbMATHGoogle Scholar
  299. 299.
    M. Mijatović, S. Pilipović, and F. Vajzović, “α times integrated semigroups (α ∈ ℝ+),” J. Math. Anal. Appl., 210, No. 2, 790–803 (1997).Google Scholar
  300. 300.
    N. V. Minh, “Almost periodic solutions of C-well-posed evolution equations,” Math. J. Okayama Univ., 48, 145–157 (2006).MathSciNetzbMATHGoogle Scholar
  301. 301.
    Man Nguyen Minh, “Almost periodic solutions of evolution equations associated with C-semigroups: An approach via implicit difference equations,” Vietnam J. Math., 33, No. 1, 63–72 (2005).Google Scholar
  302. 302.
    I. Mishra, “C-semigroups and almost periodic solution of non-autonomous evolution equation,” Int. J. Evol. Equ., 6, No. 3, 265–278 (2013).MathSciNetzbMATHGoogle Scholar
  303. 303.
    I. Miyadera, “A generalization of the Hille–Yosida theorem,” Proc. Jpn. Acad. Ser. A Math. Sci., 64, No. 7, 223–226 (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  304. 304.
    I. Miyadera, “C-semigroups, semigroups and n times integrated semigroups,” In: Differential equations and control theory (Iaşi, 1990), 193–207, Pitman Res. Notes Math. Ser., 250, Longman Sci. Tech., Harlow (1991).Google Scholar
  305. 305.
    I. Miyadera, “C-semigroups and semigroups of linear operators,” Differential equations (Plovdiv, 1991), 133–143, World Sci. Publ., River Edge, NJ (1992).Google Scholar
  306. 306.
    I. Miyadera, “On the generators of exponentially bounded C-semigroups,” Proc. Jpn. Acad. Ser. A Math. Sci., 62, No. 7, 239–242 (1986).MathSciNetzbMATHCrossRefGoogle Scholar
  307. 307.
    I. Miyadera, M. Okubo, and N. Tanaka, “α times integrated semigroups and abstract Cauchy problem,” Mem. School Sci. Engrg. Waseda Univ., No. 57, 267–289 (1994).Google Scholar
  308. 308.
    I. Miyadera, M. Okubo, and N. Tanaka, “On integrated semigroups which are not exponentially bounded,” Proc. Jpn. Acad. Ser. A Math. Sci., 69, No. 6, 199–204 (1993).MathSciNetzbMATHCrossRefGoogle Scholar
  309. 309.
    I. Miyadera and N. Tanaka, “A remark on exponentially bounded C-semigroups,” Proc. Jpn. Acad. Ser. A Math. Sci., 66, No. 2, 31–34 (1990).MathSciNetzbMATHCrossRefGoogle Scholar
  310. 310.
    I. Miyadera and N. Tanaka, “Exponentially bounded C-semigroups and generation of semigroups,” J. Math. Anal. Appl., 143, No. 2, 358–378 (1989).MathSciNetzbMATHCrossRefGoogle Scholar
  311. 311.
    I. Miyadera and N. Tanaka, “Generalization of the Hille–Yosida theorem,” In: Semigroup theory and evolution equations (Delft, 1989), 371–381, Lecture Notes in Pure and Appl. Math., 135, Dekker, New York (1991).Google Scholar
  312. 312.
    V. A. Morozov, “Generalized ‘sourcewisity’ and the rate of convergence of regularized solutions,” Fundam. Prikl. Mat., 3, No. 1, 171–177 (1997).MathSciNetzbMATHGoogle Scholar
  313. 313.
    V. A. Morozov, Regularization Methods for Ill-posed Problems, Transl. from the Russian, CRC Press, Boca Raton, FL (1993).Google Scholar
  314. 314.
    Claus Muller and Eberhard Schock, “Ill-posed problems, C 0-semigroups and the Showalter regularization,” J. Math. Anal. Appl., 299, No. 1, 205–220 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  315. 315.
    K. Nagaoka, “Generation of the integrated semigroups by superelliptic differential operators,” J. Math. Anal. Appl., 341, No. 2, 1143–1154 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  316. 316.
    F. Neubrander, “Integrated semigroups and their application to complete second order Cauchy problems,” In: Semigroups and differential operators (Oberwolfach, 1988). Semigroup Forum, 38, No. 2, 233–251 (1989).Google Scholar
  317. 317.
    F. Neubrander, “Integrated semigroups and their applications to the abstract Cauchy problem,” Pacific J. Math., 135, No. 1, 111–155 (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  318. 318.
    S. Nicaise, “The Hille–Yosida and Trotter–Kato theorems for integrated semigroups,” J. Math. Anal. Appl., 180, No. 2, 303–316 (1993).MathSciNetzbMATHCrossRefGoogle Scholar
  319. 319.
    N. Okazawa, “A generation theorem for semigroups of growth order α,” Tohoku Math. J., 26, No. 1, 39–51 (1974).MathSciNetzbMATHCrossRefGoogle Scholar
  320. 320.
    N. Okazawa, “A remark on infinitesimal generators of C-semigroups,” SUT J. Math., 25, No. 2, 123–127 (1989).MathSciNetzbMATHGoogle Scholar
  321. 321.
    S. Ouchi, “Semigroups of operators in locally convex spaces,” J. Math. Soc. Jpn., 25, 265–276 (1973).MathSciNetzbMATHCrossRefGoogle Scholar
  322. 322.
    M. M. H. Pang, “Resolvent estimates for Schrödinger operators in L p(ℝN) and the theory of exponentially bounded C-semigroups,” Semigroup Forum, 41, No. 1, 97–114 (1990).Google Scholar
  323. 323.
    V. S. Parfenenkova, “Classification of solution operators semigroups for abstract Cauchy problems,” The Bulletin of Irkutsk State University. Series “Mathematics”, Vol. 9, 103–117 (2014).Google Scholar
  324. 324.
    J. Y. Park, “Exponentially bounded C-semigroup in Frechet space,” Kobe J. Math., 7, No. 2, 109–123 (1990).MathSciNetzbMATHGoogle Scholar
  325. 325.
    J. Y. Park, D. H. Jeong, and J.-W. Yu, “Convergence and general representation of the exponentially bounded C-semigroups in Banach space,” Bull. Korean Math. Soc., 26, No. 1, 53–67 (1989).MathSciNetzbMATHGoogle Scholar
  326. 326.
    A. M. Peng, X. Q. Song, and X. Z. Zhang, “Stability of C-semigroups in Hilbert spaces,” J. Xuzhou Norm. Univ. Nat. Sci. Ed., 22, No. 2, 5–8 (2004).MathSciNetzbMATHGoogle Scholar
  327. 327.
    Jigen Peng and Kexue Li, “A novel characteristic of solution operator for the fractional abstract Cauchy problem,” J. Math. Anal. Appl., 385, 786–796 (2012).Google Scholar
  328. 328.
    J. G. Peng and M. S. Wang, “The (n, k)-well-posedness of abstract Cauchy problems,” Gongcheng Shuxue Xuebao, 11, No. 2, 123–126 (1994).Google Scholar
  329. 329.
    Yu. I. Petunin and A. N. Plichko, The Theory of the Characteristics of Subspaces and Its Applications [in Russian], Golovnoe Izdatel’stvo Izdatel’skogo Ob’edineniya “Vishcha Shkola,” Kiev (1980), p. 216.Google Scholar
  330. 330.
    S. Piskarev, Differential Equations in Banach Space and Their Approximation [in Russian], Moscow State University Publish House, Moscow (2005).Google Scholar
  331. 331.
    S. Piskarev, “Estimates of the convergence rate in case of solution of ill-posed problems for evolution equations,” Izv. Akad. Nauk USSR, Ser. Math., Vol. 51, No. 3, 678–687 (1987).Google Scholar
  332. 332.
    S. Piskarev, “Solution of a second order evolution equation under the Krein–Fattorini conditions,” Differ. Equ., 21, 1100–1106 (1985).MathSciNetzbMATHGoogle Scholar
  333. 333.
    S. Piskarev, “Discretization of abstract hyperbolic equation,” Tartu Riikl. Ul. Toimetised, 500, 3–23 (1979).MathSciNetGoogle Scholar
  334. 334.
    S. Piskarev, S.-Y. Shaw, and J. A. van Casteren, “Approximation of ill-posed evolution problems and discretization of C-semigroups,” J. Inverse Ill-Posed Probl., 10, No. 5, 513–546 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  335. 335.
    M. V. Plekhanova and V. E. Fedorov, “On the existence and uniqueness of solutions of problems of the optimal control of linear distributed systems unsolved with respect to the time derivative,” Izv. Ross. Akad. Nauk, Ser. Mat., 75, No. 2, 177–194 (2011).Google Scholar
  336. 336.
    M. V. Plekhanova and V. E. Fedorov, “An optimality criterion in a control problem for a Sobolev-type linear equation,” Izv. Ross. Akad. Nauk Teor. Sist. Upr., No. 2, 37–44 (2007).Google Scholar
  337. 337.
    M. V. Plekhanova and V. E. Fedorov, “An optimal control problem for a class of degenerate equations,” Izv. Akad. Nauk Teor. Sist. Upr., No. 5, 40–44 (2004).Google Scholar
  338. 338.
    P. Preda, A. Pogan, and C. Preda, “The Perron problem for C-semigroups,” Math. J. Okayama Univ., 46, 141–151 (2004).MathSciNetzbMATHGoogle Scholar
  339. 339.
    J. Prüss, Evolutionary Integral Equation and Applications, Birkhäuser, Basel (1993).zbMATHCrossRefGoogle Scholar
  340. 340.
    M. Qian, “Extension of an elliptic differential operator and C-semigroups,” Acta Math. Sinica, 22, No. 4, 471–486 (1979).MathSciNetzbMATHGoogle Scholar
  341. 341.
    J. Qiang, M. Li, and Q. Zheng, “The applications of C-semigroups to the Dirac equation,” Appl. Math. Lett., 22, No. 3, 422–427 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  342. 342.
    H. L. Qiao and H. X. Zhao, “Individual weak stability of C-semigroups,” Pure Appl. Math. (Xi’an), 23, No. 1, 83–86 (2007).MathSciNetzbMATHGoogle Scholar
  343. 343.
    D. Rastović, “A note on stability properties of integrated semigroups,” Acta Math. Inform. Univ. Ostraviensis, 3, No. 1, 61–65 (1995).MathSciNetzbMATHGoogle Scholar
  344. 344.
    R. Rong, X. Q. Song, D. X. Cao, and L. L. Guo, “Laplace inverse transformation and asymptotic expansion for n times integrated C-semigroups,” J. Shandong Univ. Sci. Technol. Nat. Sci., 25, No. 2, 109–111 (2006).MathSciNetGoogle Scholar
  345. 345.
    A. A. Samarsky, I. P. Gavrilyuk, and V. L. Makarov, “Stability and regularization of three-level difference schemes with unbounded operator coefficients in Banach spaces,” SIAM J. Numer. Anal., 39, No. 2, 708–723 (2001).MathSciNetzbMATHCrossRefGoogle Scholar
  346. 346.
    N. Sanekata, “Some remarks on the abstract Cauchy problem,” Publ. RIMS, Kyoto Univ., 11, 51–65 (1975).Google Scholar
  347. 347.
    V. Schuchman, “Complete second order differential equations in Banach spaces,” In: Semigroups of Operators: Theory and Applications (Rio de Janeiro, 2001), 238–255, Optimization Software, New York (2002).Google Scholar
  348. 348.
    V. Schuchman and Julio Cesar Ruiz Claeyssen, “Evolution equations of higher order in Banach spaces,” Appl. Anal., 72, No. 3-4, 459–468 (1999).Google Scholar
  349. 349.
    S. Schwarz, “The ideal structure of C-semigroups,” Czech. Math. J., 27(102), No. 2, 313–337 (1977).Google Scholar
  350. 350.
    H. Serizawa, “Representation formulas for integrated semigroups and sine families,” Aeq. Math., 44, No. 2–3, 278–291 (1992).MathSciNetzbMATHCrossRefGoogle Scholar
  351. 351.
    S.-Y. Shaw, “Ergodic properties of integrated semigroups and resolvent families,” In: International Mathematics Conference ’94 (Kaohsiung, 1994), 171–178, World Sci. Publ., River Edge, NJ (1996).Google Scholar
  352. 352.
    S.-Y. Shaw, “Ergodic theorems with rates for r times integrated solution families,” Operator Theory and Related Topics, Vol. II (Odessa, 1997), 359–371, Oper. Theory Adv. Appl., 118, Birkhäuser, Basel (2000).Google Scholar
  353. 353.
    S.-Y. Shaw, “On Cesaro and Abel limits of C-semigroups,” Dedicated to the memory of Professor Tsing-Houa Teng, Soochow J. Math., 20, No. 4, 547–553 (1994).Google Scholar
  354. 354.
    S.-Y. Shaw, “Uniform ergodic theorems for locally integrable semigroups and pseudoresolvents,” Proc. Am. Math. Soc., 98, No. 1, 61–67 (1986).MathSciNetzbMATHGoogle Scholar
  355. 355.
    S.-Y. Shaw and D.-K. Chyan, “Maximal regularity and bounded semivariation of local Csemigroups,” Preprint (1997).Google Scholar
  356. 356.
    S.-Y. Shaw and Ch.-Ch. Kuo, “Generation of local C-semigroups and solvability of the abstract Cauchy problems,” Taiwan. J. Math., 9, No. 2, 291–311 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  357. 357.
    S.-Y. Shaw and Ch.-Ch. Kuo, “Local C-semigroups and the abstract Cauchy problems,” Preprint (1996).Google Scholar
  358. 358.
    S.-Y. Shaw and Y.-Ch. Li, “Characterization and generation of local C-cosine and C-sine functions,” Int. J. Evol. Equ., 1, No. 4, 373–401 (2005).MathSciNetzbMATHGoogle Scholar
  359. 359.
    S.-Y. Shaw and Y.-Ch. Li, “On n times integrated C-cosine functions,” Evolution equations (Baton Rouge, LA, 1992), 393–406, Lecture Notes in Pure and Appl. Math., 168, Dekker, New York (1995).Google Scholar
  360. 360.
    S.-Y. Shaw and Y.-Ch. Li, “Representation formulas for C-semigroups,” Semigroup Forum, 46, No. 1, 123–125 (1993).Google Scholar
  361. 361.
    J.-H. Shen and G.-Z. Song, “A generalization of C-semigroup,” Northeast. Math. J., 16, No. 4, 417–427 (2000).MathSciNetzbMATHGoogle Scholar
  362. 362.
    J. H. Shen and G. Zh. Song, “General integrated semigroups,” Acta Math. Sci. Ser. A Chin. Ed., 20, No. 4, 480–486 (2000).MathSciNetzbMATHGoogle Scholar
  363. 363.
    J. Shen and G. Song, “The Laplace transform and integrated semigroups,” Nanjing Daxue Xuebao Shuxue Bannian Kan, 14, No. 1, 15–22 (1997).Google Scholar
  364. 364.
    Wang Wang Sheng and Chu Gao Ming, “Automatic extensions of local regularized semigroups and local regularized cosine functions,” Proc. Am. Math. Soc., 127, 1651–1663 (1999).Google Scholar
  365. 365.
    D. M. Shi and L. Sh. Yang, “Locally equicontinuous C-semigroups,” J. Systems Sci. Math. Sci., 14, No. 2, 121–129 (1994).MathSciNetzbMATHGoogle Scholar
  366. 366.
    J. Shi and S. Cai, “Subgenerators of C-semigroups on l 2,” Anal. Theory Appl., 25, No. 3, 297–300 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  367. 367.
    Y. Shinohara, “Characterizations of C-semigroups,” Math. J. Okayama Univ., 43, 137–142 (2001).MathSciNetzbMATHGoogle Scholar
  368. 368.
    D. W. Showalter and A. Ben-Israel, “Representation and computation of the generalized inverse of a bounded linear operator between Hilbert spaces,” Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat., 48, 184–194 (1970).Google Scholar
  369. 369.
    L. Skula, “On C-semigroups,” Acta Arith., 31, No. 3, 247–257 (1976).MathSciNetzbMATHCrossRefGoogle Scholar
  370. 370.
    Sh. Song, C-semigroups on Banach spaces and functional inequalities,” Seminaire de Probabilites, XXIX, 297–326, Lecture Notes in Math., 1613, Springer, Berlin (1995).Google Scholar
  371. 371.
    X. Song, “Spectral mapping theorems for C-semigroups,” J. Math. Res. Exposition, 16, No. 4, 526–530 (1996).MathSciNetzbMATHGoogle Scholar
  372. 372.
    X. Q. Song, A. M. Peng, and C. X. Wang, “Probabilistic approximations for C-semigroups and integrated semigroups,” Nanjing Daxue Xuebao Shuxue Bannian Kan, 20, No. 2, 216–225 (2003).Google Scholar
  373. 373.
    M. Sova, “Problémes de Cauchy paraboliques abstraits de classes superieures et les semi-groupes distributions,” Ric. Mat., 18, 215–238 (1969).MathSciNetzbMATHGoogle Scholar
  374. 374.
    B. Straub, “Fractional powers of operators with polynomially bounded resolvent and the semigroups generated by them,” Hiroshima Math. J., 24, No. 3, 529–548 (1994).MathSciNetzbMATHGoogle Scholar
  375. 375.
    G. Z. Sun, “α times integrated C-semigroups and abstract Cauchy problems,” Acta Math. Sinica (Chin. Ser.), 42, No. 4, 757–762 (1999).Google Scholar
  376. 376.
    G. Zh. Sun, “Local C-semigroups and their applications to inhomogeneous (ACP) on a finite interval,” Nanjing Daxue Xuebao Shuxue Bannian Kan, 12, No. 1, 21–27 (1995).Google Scholar
  377. 377.
    R. K. Sun and Q. R. Liu, “Integrated semigroup methods for solving a class of abstract integro-differential equations,” Pure Appl. Math. (Xi’an), 9, No. 1, 95–99 (1993).MathSciNetGoogle Scholar
  378. 378.
    Sh. G. Sun, M. Qi, and L. Kong, “Analytic families of integrated semigroups,” J. Shandong Univ. Sci. Technol. Nat. Sci., 23, No. 4, 94–96 (2004).MathSciNetGoogle Scholar
  379. 379.
    G. A. Sviridyuk and V. E. Fedorov, “Linear Sobolev type equations and degenerate semigroups of operators,” Inverse Ill-posed Probl. Ser., VSP, Utrecht (2003), pp. 216.Google Scholar
  380. 380.
    G. A. Sviridyuk and V. E. Fedorov, Sobolev-type Linear Equations [in Russian], Chelyab. Gos. Univ., Chelyabinsk (2003), pp. 180.Google Scholar
  381. 381.
    G. A. Sviridyuk and V. E. Fedorov, “Semigroups of operators with kernels,” Vestnik Chelyab. Univ. Ser. 3 Mat. Mekh. Inform., No. 1(6), 42–70 (2002).Google Scholar
  382. 382.
    G. A. Sviridyuk and N. A. Manakova, “Regular perturbations of a class of linear equations of Sobolev type,” Differ. Uravn., 38, No. 3, 423–425, 432 (2002).Google Scholar
  383. 383.
    G. A. Sviridyuk and A. A. Zamyshlyaeva, “The phase spaces of a class of higher-order linear equations of Sobolev type,” Differ. Uravn., 42, No. 2, 252–260, 287 (2006).Google Scholar
  384. 384.
    Tosiharu Takenaka and Noboru Okazawa, “Well-posedness of abstract Cauchy problems for second order differential equations,” Isr. J. Math., 69, No. 3, 257–288 (1990).zbMATHCrossRefGoogle Scholar
  385. 385.
    T. Takenaka and S. Piskarev, “Local C-cosine families and n times integrated local cosine families,” Taiwan. J. Math., 8, No. 3, 515–545 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  386. 386.
    N. Tanaka, “Approximation of integrated semigroups by ‘integrated’ discrete parameter semigroups,” Semigroup Forum, 55, No. 1, 57–67 (1997).Google Scholar
  387. 387.
    N. Tanaka, “On perturbation theory for exponentially bounded C-semigroups,” Semigroup Forum, 41, No. 2, 215–236 (1990).Google Scholar
  388. 388.
    N. Tanaka, “Holomorphic C-semigroups and holomorphic semigroups,” In: Semigroups and Differential Operators (Oberwolfach, 1988), Semigroup Forum, 38, No. 2, 253–261 (1989).Google Scholar
  389. 389.
    N. Tanaka, “Locally Lipschitz continuous integrated semigroups,” Stud. Math., 167, No. 1, 1–16 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  390. 390.
    N. Tanaka, “On the exponentially bounded C-semigroups,” Tokyo J. Math., 10, No. 1, 107–117 (1987).MathSciNetzbMATHCrossRefGoogle Scholar
  391. 391.
    N. Tanaka, “Perturbation theorems of Miyadera type for locally Lipschitz continuous integrated semigroups,” Stud. Math., 156, No. 2, 177–187 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  392. 392.
    N. Tanaka and I. Miyadera, “C-semigroups and the abstract Cauchy problem,” J. Math. Anal. Appl., 170, No. 1, 196–206 (1992).MathSciNetzbMATHCrossRefGoogle Scholar
  393. 393.
    N. Tanaka and I. Miyadera, “Exponentially bounded C-semigroups and integrated semigroups,” Tokyo J. Math., 12, No. 1, 99–115 (1989).MathSciNetzbMATHCrossRefGoogle Scholar
  394. 394.
    N. Tanaka and I. Miyadera, “Some remarks on C-semigroups and integrated semigroups,” Proc. Jpn. Acad. Ser. A Math. Sci., 63, No. 5, 139–142 (1987).MathSciNetzbMATHCrossRefGoogle Scholar
  395. 395.
    N. Tanaka and N. Okazawa, “Local C-semigroups and local integrated semigroups,” Proc. London Math. Soc. (3), 61, No. 1, 63–90 (1990).Google Scholar
  396. 396.
    H. R. Thieme, “Differentiability of convolutions, integrated semigroups of bounded semivariation, and the inhomogeneous Cauchy problem,” J. Evol. Equ., 8, No. 2, 283–305 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  397. 397.
    H. R. Thieme, “Integrated semigroups and integrated solutions to abstract Cauchy problems,” J. Math. Anal. Appl., 152, No. 2, 416–447 (1990).MathSciNetzbMATHCrossRefGoogle Scholar
  398. 398.
    H. R. Thieme, “Positive perturbations of dual and integrated semigroups,” Adv. Math. Sci. Appl., 6, No. 2, 445–507 (1996).MathSciNetzbMATHGoogle Scholar
  399. 399.
    H. R. Thieme and H. Vosseler, “A Stieltjes type convolution for integrated semigroups of bounded strong variation and L p-solutions to the abstract Cauchy problem,” Differ. Integral Equ., 15, No. 10, 1171–1218 (2002).zbMATHMathSciNetGoogle Scholar
  400. 400.
    A. N. Tikhonov and V. Ya. Arsenin, Methods for the Solution of Ill-Posed Problems [in Russian], Nauka, Moscow (1979).Google Scholar
  401. 401.
    Huang Tingwen, “Local integrated cosine family,” J. Sichuan Univ., Nat. Sci. Ed., 31, No. 4, 442–451 (1994).Google Scholar
  402. 402.
    T. Huang and F. Huang, “Holomorphic C-semigroups and their perturbations,” J. Sichuan Univ., Nat. Sci. Ed., 31, No. 3, 289–291 (1994).Google Scholar
  403. 403.
    S. P. Toropova, “A relation between semigroups with a singularity and integrated semigroups,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 3, 69–77 (2003).Google Scholar
  404. 404.
    C. C. Travis and G. F. Webb, “Compactness, regularity, and uniform continuity properties of strongly continuous cosine families,” Houston J. Math., 3, 555–567 (1977).MathSciNetzbMATHGoogle Scholar
  405. 405.
    A. V. Urazaeva and V. E. Fedorov, “On the well-posedness of the prediction-control problem for some systems of equations,” Mat. Zametki, 85, No. 3, 440–450 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  406. 406.
    A. V. Urazaeva and V. E. Fedorov, “Prediction-control problems for some systems of equations of fluid dynamics,” Differ. Uravn., 44, No. 8, 1111–1119 (2008).MathSciNetzbMATHGoogle Scholar
  407. 407.
    T. Ushijima, “Approximation theory for semigroups of linear operators and its application to approximation of wave equations,” Jpn. J. Math., 1, 185–224 (1975/76).zbMATHCrossRefGoogle Scholar
  408. 408.
    G. Vainikko, “Approximative methods for nonlinear equations (two approaches to the convergence problem),” Nonlinear Anal., 2, 647–687 (1978).MathSciNetzbMATHCrossRefGoogle Scholar
  409. 409.
    G. M. Vajnikko and A. Yu. Veretennikov, Iterative Procedures in Ill-Posed Problems [in Russian], Nauka, Moscow (1986).Google Scholar
  410. 410.
    F. Vajzović and R. Vugdalić, “Two exponential formulas for α times integrated semigroups (α ∈ ℝ+),” Sarajevo J. Math., 1(13), No. 1, 93–116 (2005).Google Scholar
  411. 411.
    V. V. Vasiliev, The Theory of Semigroups and Cosine Operator-Functions [in Russian], VSU, Voronezh. (2005).Google Scholar
  412. 412.
    V. V. Vasil’ev and L. V. Khlivnenko, Integrated semigroups [in Russian], VSU, Voronezh (2009).Google Scholar
  413. 413.
    V. V. Vasiliev and S. I. Piskarev, Differential Equations in Banach Spaces I. Semigroup Theory [in Russian], Moscow State University Publish House, Moscow (1996).Google Scholar
  414. 414.
    V. V. Vasiliev and S. I. Piskarev, “Differential equations in Banach spaces II. Cosine-operator functions,” J. Math. Sci., Vol. 122, No. 2, 3055–3174 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  415. 415.
    M. Voicu, “Integrated semigroups and Cauchy problems on locally convex spaces,” Rev. Roum. Math. Pures Appl., 39, No. 1, 63–78 (1994).MathSciNetzbMATHGoogle Scholar
  416. 416.
    R. Vugdalić, “A formula for n times integrated semigroups (n ∈ ℕ),” Sarajevo J. Math., 4(16), No. 1, 125–132 (2008).Google Scholar
  417. 417.
    R. Vugdalić, “Representation theorems for integrated semigroups,” Sarajevo J. Math., 1(14), No. 2, 243–250 (2005).Google Scholar
  418. 418.
    J. P.Wan, “Product perturbations of C-semigroups and integral semigroups,” J. Huazhong Univ. Sci. Tech., 25, suppl. I, 102–105 (1997).Google Scholar
  419. 419.
    C. Wang and X. Song, “Integrated C-semigroups and abstract integro-differential equations,” Nanjing Daxue Xuebao Shuxue Bannian Kan, 23, No. 2, 217–224 (2006).Google Scholar
  420. 420.
    C. X. Wang and X. Q. Song, “n times integrated C-semigroups and strong solutions to nonhomogeneous abstract Cauchy problems,” Acta Anal. Funct. Appl., 8, No. 3, 247–251 (2006).MathSciNetGoogle Scholar
  421. 421.
    C. X. Wang, X. Q. Song, and D. X. Cao, “n times integrated C-semigroups and the abstract Cauchy problem,” Pure Appl. Math. (Xi’an), 22, No. 3, 365–371 (2006).Google Scholar
  422. 422.
    C. X. Wang, X. Q. Song, and X. Z. Zhang, “A representation of integrated C-semigroups,” J. Xuzhou Norm. Univ. Nat. Sci. Ed., 23, No. 1, 24–26 (2005).MathSciNetGoogle Scholar
  423. 423.
    J. J. Wang and Y. R. Li, “Perturbations and approximations of Markov integrated semigroups,” Acta Anal. Funct. Appl., 13, No. 2, 121–123 (2011).MathSciNetzbMATHGoogle Scholar
  424. 424.
    Sh. W. Wang, “Mild integrated C-existence families,” Stud. Math., 112, No. 3, 251–266 (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  425. 425.
    Sh. W. Wang, “Quasi-distribution semigroups and integrated semigroups,” J. Funct. Anal., 146, No. 2, 352–381 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  426. 426.
    Sh. W. Wang, “Hille–Yosida type theorems for local regularized semigroups and local integrated semigroups,” Stud. Math., 152, No. 1, 45–67 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  427. 427.
    Sh. W. Wang and M. Ch. Gao, “Automatic extensions of local regularized semigroups and local regularized cosine functions,” Proc. Am. Math. Soc., 127, No. 6, 1651–1663 (1999).MathSciNetzbMATHCrossRefGoogle Scholar
  428. 428.
    Sh. W. Wang, M. Y.Wang, and Y. Shen, “Perturbation theorems for local integrated semigroups and their applications,” Stud. Math., 170, No. 2, 121–146 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  429. 429.
    X.-Y. Wen and Y.-R. Li, “Stochastic monotone Markov integrated semigroups,” Math. Appl. (Wuhan), 22, No. 4, 690–696 (2009).MathSciNetzbMATHGoogle Scholar
  430. 430.
    David VernonWidder, “The Laplace transform,” Princeton Mathematical Series, V. 6. Princeton University Press, Princeton, New Jersey (1941).Google Scholar
  431. 431.
    B. Wu, “Integrated semigroups of bounded linear operators and their applications to inverse problems,” Thesis (Ph.D.), The Claremont Graduate University (1992).Google Scholar
  432. 432.
    T.-J. Xiao and J. Liang, “Approximations of Laplace transforms and integrated semigroups,” J. Funct. Anal., 172, No. 1, 202–220 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  433. 433.
    T. Xiao and J. Liang, “Integrated semigroups, cosine families and higher order abstract Cauchy problems,” In: Functional Analysis in China, 351–365, Math. Appl., 356, Kluwer Acad. Publ., Dordrecht (1996).Google Scholar
  434. 434.
    T. Xiao and J. Liang, “Laplace transforms and integrated, regularized semigroups in locally convex spaces,” J. Funct. Anal., 148, No. 2, 448–479 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  435. 435.
    T. Xiao and J. Liang, “Widder–Arendt theorem and integrated semigroups in locally convex space,” Sci. China Ser. A, 39, No. 11, 1121–1130 (1996).MathSciNetzbMATHGoogle Scholar
  436. 436.
    L. H. Xie and M. Q. Li, “Weak almost periodicity of C-semigroups,” Dianzi Keji Daxue Xuebao, 33, No. 2, 218–220 (2004).Google Scholar
  437. 437.
    L. Xie, M. Li, and F. Huang, “Asymptotic almost periodicity of C-semigroups,” Int. J. Math. Math. Sci., No. 2, 65–73 (2003).Google Scholar
  438. 438.
    G.-J. Yang, “α times integrated semigroups and singular equations,” Southeast Asian Bull. Math., 23, No. 2, 309–315 (1999).MathSciNetGoogle Scholar
  439. 439.
    Y. T. Yang and H. X. Zhao, “Kato perturbations of generators of analytic C-semigroups,” J. Zhengzhou Univ. Nat. Sci. Ed., 45, No. 1, 15–18 (2013).MathSciNetGoogle Scholar
  440. 440.
    J. Q. Yao, “The adjoint semigroups of exponentially bounded C-semigroups,” J. Syst. Sci. Math. Sci., 19, No. 3, 319–322 (1999).MathSciNetzbMATHGoogle Scholar
  441. 441.
    W. Sh. Y¨u and A. Sh. Xu, “C-semigroups and the solutions of abstract functional-differential equations with infinite delay,” Sichuan Daxue Xuebao, 32, No. 2, 101–108 (1995).Google Scholar
  442. 442.
    R. X. Zhao, “Smooth distribution semigroups and integrated semigroups: The degenerate case,” Chinese Ann. Math. Ser. A, 21, No. 2, 175–188 (2000); translation in Chinese J. Contemp. Math., 21, No. 2, 133–148 (2000).Google Scholar
  443. 443.
    H. X. Zhao and Q. R. Liu, “Local integrated C-semigroups and the abstract Cauchy problems. III,” Pure Appl. Math. (Xi’an), 12, No. 1, 53–58 (1996).Google Scholar
  444. 444.
    W.-Q. Zhao and Y.-R. Li, “Restriction of Markov integrated semigroups and generation of increasing integrated semigroups,” Acta Anal. Funct. Appl., 7, No. 2, 137–145 (2005).MathSciNetzbMATHGoogle Scholar
  445. 445.
    Q. Zheng, “Applications of integrated semigroups to higher order abstract Cauchy problems,” Syst. Sci. Math. Sci., 5, No. 4, 316–327 (1992).MathSciNetzbMATHGoogle Scholar
  446. 446.
    Q. Zheng, “Integrated semigroups and abstract Cauchy problems,” Adv. Math., 21, No. 3, 257–273 (1992).MathSciNetzbMATHGoogle Scholar
  447. 447.
    Q. Zheng, “Perturbations and approximations of integrated semigroups,” Acta Math. Sinica (N.S.), 9, No. 3, 252–260 (1993).Google Scholar
  448. 448.
    Q. Zheng, “Some classes of operator matrices that generate integrated semigroups,” Acta Math. Sinica, 36, No. 4, 456–467 (1993).MathSciNetGoogle Scholar
  449. 449.
    Quan Zheng and Yansong Lei, “Exponentially bounded C-semigroup and integrated semigroup with nondensely defined generators. I: Approximation,” Acta Math. Sci., 13, No. 3, 251–260 (1993).MathSciNetzbMATHCrossRefGoogle Scholar
  450. 450.
    Q. Zheng and Y. S. Lei, “Exponentially bounded C-semigroups and integrated semigroups with non-densely defined generators. III. Analyticity,” Acta Math. Sci. (English Ed.), 14, No. 1, 107–119 (1994).Google Scholar
  451. 451.
    Q. Zheng and Y. S. Lei, “Integrated C-semigroups,” J. Huazhong Univ. Sci. Tech., 20, No. 5, 181–187 (1992).MathSciNetzbMATHGoogle Scholar
  452. 452.
    Quan Zheng and Yansong Lei, “Exponentially bounded C-semigroup and integrated semigroup with nondensely defined generators. II: Perturbation,” Acta Math. Sci., 13, 428–434 (1993).Google Scholar
  453. 453.
    Q. Zheng and M. Li, “Regularized semigroups and non-elliptic differential operators,” Science Press, Beijing, China (2014).Google Scholar
  454. 454.
    Quan Zheng and Liping Liu, “Almost periodic regularized groups, semigroups, and cosine functions,” J. Math. Anal. Appl., 197, No. 1, 90–112 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  455. 455.
    X. Zou, “A generation theorem for local C-semigroups,” Nanjing Daxue Xuebao Ziran Kexue Ban, 34, No. 4, 406–411 (1998).Google Scholar
  456. 456.
    H. Zwart, “Is A 1 an infinitesimal generator? Perspectives in operator theory,” In: Papers of the workshop on operator theory, Warsaw, Poland, April 19–May 3, 2004, Polish Academy of Sciences, Institute of Mathematics, Warsaw; Banach Center Publ., 75, 303–313 (2007).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. V. Vasil’ev
    • 1
  • S. I. Piskarev
    • 2
    • 3
  • N. Yu. Selivanova
    • 3
  1. 1.Voronezh State UnivercityVoronezhRussia
  2. 2.Scientific Research Computer CenterM. V. Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Russian Institute for Scientific and Technical InformationMoscowRussia

Personalised recommendations