Advertisement

Journal of Mathematical Sciences

, Volume 229, Issue 4, pp 412–424 | Cite as

Asymptotic Behavior of the Solutions of a Third-Order Nonlinear Differential Equation

  • J. R. Graef
  • M. Remili
Article
  • 55 Downloads

The asymptotic properties of the solutions of some third-order differential equation are examined. Sufficient conditions for the square integrability and oscillation of the solutions are established.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. P. Agarwal, S. R. Grace, and D. O’Regan, Oscillation Theory for Difference and Functional Differential Equations, Kluwer, Dordrecht (2000).CrossRefMATHGoogle Scholar
  2. 2.
    L. Erbe, “Oscillation, nonoscillation, and asymptotic behavior for third-order nonlinear differential equations,” Ann. Mat. Pura Appl., 4, No. 110, 333–391 (1976).MathSciNetMATHGoogle Scholar
  3. 3.
    M. Gera, J. R. Graef, and M. Greguˇs, “On oscillatory and asymptotic properties of solutions of certain nonlinear third-order differential equations,” Nonlin. Anal., 32, 417–425 (1998).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    J. R. Graef and M. Remili, “Some properties of monotonic solutions of x′′′ + p(t)x′ + q(t) f(x),” PanAmer. Math. J., 22, 31–39 (2012).MathSciNetMATHGoogle Scholar
  5. 5.
    J. R. Graef and M. Remili, “Oscillation criteria for third-order nonlinear differential equations,” Comm. Appl. Nonlin. Anal., 18, 21–28 (2011).MathSciNetMATHGoogle Scholar
  6. 6.
    M. Greguš, Third-Order Linear Differential Equations, Reidel, Boston (1987).CrossRefMATHGoogle Scholar
  7. 7.
    M. Greguš and J. R. Graef, “On a certain nonautonomous nonlinear third-order differential equation,” Appl. Anal., 58, 175–185 (1995).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    M. Greguš, J. R. Graef, and M. Gera, “Oscillating nonlinear third-order differential equations,” Nonlin. Anal., 28, 1611–1622 (1997).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    J. W. Heidel, “Qualitative behavior of solutions of a third-order nonlinear differential equation,” Pacif. J. Math., 27, 507–526 (1968).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    I. Kiguradze and T. Chanturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Kluwer, Dordrecht (1993).CrossRefGoogle Scholar
  11. 11.
    T. Kura, “Nonoscillation criteria for nonlinear ordinary differential equations of the third order,” Nonlin. Anal., 8, 369–379 (1984).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    P. A. Ohme, “Asymptotic behavior of the solutions of the third-order nonlinear differential equations,” Ann. Mat. Pura Appl., 104, 43–65 (1975).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    S. H. Saker, “Oscillation criteria of third-order nonlinear delay differential equations,” Math. Slovaca, 56, 433–450 (2006).MathSciNetMATHGoogle Scholar
  14. 14.
    A. Škerlík, “Oscillation theorems for third-order nonlinear differential equations,” Math. Slovaca, 42, 471–484 (1992).MathSciNetMATHGoogle Scholar
  15. 15.
    A. Tiryaki and M. F. Aktas, “Oscillation criteria of a certain class third-order nonlinear differential equations with damping,” J. Math. Anal. Appl., 325, 54–68 (2007).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    P. Waltman, “Oscillation criteria for third-order nonlinear differential equations,” Pacif. J. Math., 18, 385–389 (1966).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dep. Math.Univ. Tennessee at ChattanoogaChattanoogaUSA
  2. 2.Dep. Math.Univ. OranOranAlgeria

Personalised recommendations