Advertisement

Journal of Mathematical Sciences

, Volume 229, Issue 4, pp 403–411 | Cite as

On Bounded Solutions of a Difference Equation with Jumps of the Operator Coefficient

  • M. F. Horodnii
  • I. V. Honchar
Article
  • 23 Downloads

We study the problem of existence of unique bounded solution of a difference equation with variable operator coefficient in the finite-dimensional Banach space.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. F. Gorodnii, “Bounded and periodic solutions of a difference equation and its stochastic analog in the Banach space,” Ukr. Mat. Zh., 43, No. 1, 42–46 (1991); English translation: Ukr. Math. J., 43, No. 1, 32–37 (1991).Google Scholar
  2. 2.
    A. Ya. Dorogovtsev, Periodic and Stationary Modes of Infinite-Dimensional Deterministic and Stochastic Dynamical Systems [in Russian], Vyshcha Shkola, Kiev (1992).Google Scholar
  3. 3.
    V. S. Kim, “On conditions for the existence of bounded solutions of difference equations in Banach spaces,” Differents. Uravn., 3, No. 12, 2151–2160 (1967).MathSciNetGoogle Scholar
  4. 4.
    A. G. Baskakov and A. I. Pastukhov, “Spectral analysis of the operator of weighted shift with unbounded operator coefficients,” Sib. Mat. Zh., 42, No. 6, 1231–1243 (2001).CrossRefMATHGoogle Scholar
  5. 5.
    V. E. Slyusarchuk, “Invertibility of linear nonautonomous difference operators in the space of functions bounded on ℤ;” Mat. Zametki, 37, Issue 5, 662–666 (1985).MathSciNetGoogle Scholar
  6. 6.
    D. Henry, Geometric Theory of Semilinear Parabolic Equations [Russian translation], Mir, Moscow (1985).Google Scholar
  7. 7.
    A. A. Boichuk, V. F. Zhuravlev, and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems [in Russian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (1995).MATHGoogle Scholar
  8. 8.
    O. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Boundary-Value Problems, VSP, Utrecht (2004).CrossRefMATHGoogle Scholar
  9. 9.
    A. A. Boichuk, “Solutions of linear and nonlinear difference equations bounded on the whole line,” Nonlin. Oscillat., 4, No. 1, 16–27 (2001).MathSciNetMATHGoogle Scholar
  10. 10.
    O. O. Pokutnyi, “Solutions of linear difference equations in a Banach spaces on the entire real axis,” Visn. Kyiv. Univ., Ser. Fiz.-Mat. Nauk., No. 1, 182–188 (2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. F. Horodnii
    • 1
  • I. V. Honchar
    • 1
  1. 1.Shevchenko Kyiv National UniversityKyivUkraine

Personalised recommendations