Advertisement

Journal of Mathematical Sciences

, Volume 229, Issue 4, pp 367–389 | Cite as

On the Asymptotic Properties of the Solutions of Some Functional Equations

  • D. V. Bel’skii
  • G. P. Pelyukh
Article
  • 25 Downloads

We establish new properties of the solutions of functional equations with constant delay and linearly transformed argument.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Mahler, “On a special functional equation,” J. London Math. Soc., 15, 115–123 (1940).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    D. V. Bel’skii and G. P. Pelyukh, “On the asymptotic properties of solutions of one functional-differential equation with linearly transformed argument,” Nelin. Kolyv., 16, No. 3, 291–313 (2013); English translation: J. Math. Sci., 201, No. 3, 263-287 (2014).Google Scholar
  3. 3.
    J. Hale, Theory of Functional Differential Equations, Springer, New York (1977).CrossRefMATHGoogle Scholar
  4. 4.
    N. G. de Bruijn, “The asymptotically periodic behavior of the solutions of some linear functional equations,” Amer. J. Math., 71, No. 2, 313–330 (1949).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    I. S. Berezin and N. P. Zhidkov, Numerical Methods [in Russian], Vol. 1, Fizmatgiz, Moscow (1962).Google Scholar
  6. 6.
    G. P. Pelyukh and D. V. Bel’skii, “On the asymptotic properties of the solutions of a linear functional-differential equation of neutral type with constant coefficients and linearly transformed argument,” Nelin. Kolyv., 15, No. 4, 466–493 (2012); English translation: J. Math. Sci., 194, No. 4, 374–403 (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • D. V. Bel’skii
    • 1
  • G. P. Pelyukh
    • 1
  1. 1.Institute of MathematicsUkrainian National Academy of SciencesKyivUkraine

Personalised recommendations