Skip to main content
Log in

On Periodic Solutions of Autonomous Systems

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We propose a method for the investigation of periodic solutions of autonomous dynamical systems described by ordinary differential equations with phase and integral restrictions. We formulate the general problem of periodic solutions as a boundary-value problem with restrictions. By introducing a fictitious control, we transform the boundary-value problem into a control problem for dynamical systems with phase and integral restrictions. The control problem is solved by reducing it to an integral Fredholm equation of the first kind. We establish necessary and sufficient conditions for the existence of periodic solutions and propose an algorithm for finding periodic solution according to the limit points of the minimizing sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Poincaré Sur les Courbes Définies par une Équation Différentielle, Vol. 1, Gauthiers-Villars et Cie, Paris (1928).

    Google Scholar 

  2. A. Poincaré, On Curves Given by Differential Equations [Russian translation], Gostekhizdat, Moscow (1947).

    Google Scholar 

  3. A. M. Lyapunov, General Problem of Stability of Motion [in Russian], Fizmatgiz, Moscow (1959).

    Google Scholar 

  4. N. N. Moiseev, Asymptotic Methods of Nonlinear Mechanics [in Russian], Nauka, Moscow (1969).

    MATH  Google Scholar 

  5. N. M. Krylov and N. N. Bogolyubov, Introduction to Nonlinear Mechanics [in Russian], Akad. Nauk Ukr. SSR. Kiev (1937).

    Google Scholar 

  6. N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1974).

    MATH  Google Scholar 

  7. E. P. Popov and I. P. Pal’tov, Approximate Methods for the Investigation of Nonlinear Automatic Systems [in Russian], Fizmatgiz, Moscow (1960).

    Google Scholar 

  8. E. P. Popov, Applied Theory of Control Processes in Nonlinear Systems [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  9. G. D. Birkhoff, “Surface transformations and their dynamical applications,” Acta Math., 43, 1–119 (1920).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. A. Andronov, A. A. Vitt, and S. É. Khaikin, Theory of Oscillations [in Russian], Fizmatgiz, Moscow (1959).

    MATH  Google Scholar 

  11. Yu. I. Neimark, “Method of point maps in the theory of nonlinear oscillations,” Izv. Vyssh. Uchebn. Zaved., Ser. Radiofizika, 1, 7–20 (1958).

    Google Scholar 

  12. R. A. Nelepin, “On the investigation of nonlinear autonomous systems of high order by exact mathematical methods,” Dokl. Akad. Nauk SSSR, 161, No. 4, 111–116 (1965).

    MathSciNet  Google Scholar 

  13. G. V. Kamenkov, “Investigation of nonlinear oscillations with the help of Lyapunov functions,” Tr. Patrice Lumumba Univ. Druzhby Narodov, 15, 3–35 (1966).

    MathSciNet  Google Scholar 

  14. I. G. Malkin, Some Problems of the Theory of Nonlinear Oscillations [in Russian], Gostekhizdat, Moscow (1956).

    MATH  Google Scholar 

  15. O. Vejvoda, “On perturbed nonlinear boundary-value problems,” Czech. Math. J., No. 11, 323–364 (1961).

  16. A. P. Proskuryakov, Poincaré Method in the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  17. A. Boichuk and S. Chuiko, “Autonomous weakly nonlinear boundary-value problems in critical cases,” Different. Equat., No. 10, 1353–1358 (1992).

  18. S. M. Chuiko and I. A. Boichuk, “Autonomous Noetherian boundary-value problem in the critical case,” Nelin. Kolyv., 12, No. 3, 405–416 (2009); English translation: Nonlin. Oscillat., 12, No. 3, 417–428 (2009).

  19. S. A. Aisagaliev and T. S. Aisagaliev, “Efficient method for the construction of periodic solutions of ordinary differential equations,” Izv. Nats. Akad. Nauk Resp.. Kazakh., Ser. Fiz.-Mat., No. 5, 3–11 (1997).

  20. S. A. Aisagaliev and T. S. Aisagaliev, Methods for the Solution of Boundary-Value Problems [in Russian], Kazakhskii Universitet, Almaty (2002).

    MATH  Google Scholar 

  21. S. A. Aisagaliev, “Controllability of a certain system of differential equations,” Differents. Uravn., 27, No. 9, 1475–1486 (1991).

    Google Scholar 

  22. S. A. Aisagaliev, “General solution of one class of integral equations,” Mat. Zh., 5, No. 4(18), 17–34 (2005).

    MathSciNet  Google Scholar 

  23. R. E. Kalman, “On the general theory of control systems,” in: Proc. of the First Internat. Congr. of the International Federation of Automatic Control, Vol. 2, Izd. Akad. Nauk SSSR, Moscow (1961).

  24. S. A. Aisagaliev, Lectures on Optimal Control [in Russian], Kazakhskii Universitet, Almaty (2007).

    Google Scholar 

  25. S. M. Chuiko, “On approximate solution of boundary-value problems by the least squares method,” Nelin. Kolyv., 11, No. 4, 554–573 (2008); English translation: Nonlin. Oscillat., 11, No. 4, 585–604 (2008).

  26. S.M. Chuiko and O. V. Starkova, “On the approximate solution of autonomous boundary-value problems by the least-squares method,” Nelin. Kolyv., 12, No 4, 556–573 (2009); English translation: Nonlin. Oscillat., 12, No. 4, 574–591 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Aisagaliev.

Additional information

Translated from Neliniini Kolyvannya, Vol. 20, No. 1, pp. 3–19, January–March, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aisagaliev, S.A. On Periodic Solutions of Autonomous Systems. J Math Sci 229, 335–353 (2018). https://doi.org/10.1007/s10958-018-3681-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-3681-8

Navigation