Journal of Mathematical Sciences

, Volume 224, Issue 6, pp 937–941 | Cite as

On Possible Dimensions of Subspace Intersections for Five Direct Summands

  • N. A. Lebedinskaya
  • D. M. Lebedinskii
  • A. A. Smirnov
Article
  • 8 Downloads

The paper considers the problem on the dimensions of intersections of a subspace in the direct sum of a finite series of finite-dimensional vector spaces with sums of pairs of direct summands, provided that the subspace intersection with each of these direct summands is trivial. The problem naturally splits into finding conditions for the existence and representability of the corresponding matroid. The following theorem is proved: If the ranks of all the unions of a series of blocks satisfying the condition on the ranks of subsets in the matroid are given and the blocks have full rank, then this partial rank function may be extended to a full rank function for all the subsets of the base set (the union of all the blocks). Necessary and sufficient conditions on the dimensions of the direct summands and intersections mentioned above for the corresponding matroid to exist are obtained in the case of five direct summands. Bibliography: 5 titles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. G. Oxley, “What is a matroid?” Cubo, 5, 179–218 (2003).MathSciNetMATHGoogle Scholar
  2. 2.
    M. M. Shikare and B. N. Waphare, Combinatorial Optimization, Narosa Publishing House (2004).Google Scholar
  3. 3.
    N. A. Lebedinskaya and D. M. Lebedinskii, “On possible dimensions of subspace intersections,” Vestn. St.Petersburg Univ.: Mat., Mekh., Astron., No. 2, 204–209 (2016).Google Scholar
  4. 4.
    4ti2 team. 4ti2 – A software package for algebraic, geometric and combinatorial problems on linear spaces. Available at www.4ti2.de.
  5. 5.
    J. Ellson, E. Gansner, L. Koutsofios, S. North, and G. Woodhull, “Short description and lucent technologies graphviz – open source graph drawing tools,” in: Lect. Notes Comp. Sci., Springer-Verlag (2001), pp. 483–484.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • N. A. Lebedinskaya
    • 1
  • D. M. Lebedinskii
    • 1
  • A. A. Smirnov
    • 2
  1. 1.St.Petersburg State UniversitySt.PetersburgRussia
  2. 2.Mozhaisky Military Space AcademySt.PetersburgRussia

Personalised recommendations