Journal of Mathematical Sciences

, Volume 224, Issue 6, pp 926–936 | Cite as

On Block Generalizations of \( \mathrm{\mathscr{H}} \)-Matrices

Article
  • 22 Downloads

The paper considers some classes of block matrices that can be regarded as block generalizations of the class of \( \mathrm{\mathscr{H}} \)-matrices and interrelations among them. New bounds for the infinity norm of inverses for matrices in the classes under consideration are suggested.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Cvetković and K. Doroslovački, “Max norm estimation for the inverse of block matrices,” Appl. Math. Comput., 242, 694–706 (2014).Google Scholar
  2. 2.
    L. Cvetković, V. Kostić, and R. Varga, “A new Geršgorin-type eigenvalue inclusion area,” ETNA, 18, 73–80 (2004).MATHGoogle Scholar
  3. 3.
    M. Fiedler and V. Ptak, “Generalized norms of matrices and the location of the spectrum,” Czech. Math. J., 12 (87), 558–571 (1962).MathSciNetMATHGoogle Scholar
  4. 4.
    D. G. Feingold and R. S. Varga, “Block diagonally dominant matrices and generalization of the Gerschgorin circle theorem,” Pacific J. Math., 12, 1241–1250 (1962).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    L. Yu. Kolotilina, “Improving Chistyakov’s bounds for the Perron root of a nonnegative matrix,” Zap. Nauchn. Semin. POMI, 346, 103–118 (2007).Google Scholar
  6. 6.
    L. Yu. Kolotilina, “Bounds for the determinants and inverses of certain H-matrices,” Zap. Nauchn. Semin. POMI, 346, 81–102 (2007).Google Scholar
  7. 7.
    L. Yu. Kolotilina, “Bounds for the inverses of PM- and PH-matrices,” Zap. Nauchn. Semin. POMI, 367, 75–109 (2009).Google Scholar
  8. 8.
    L. Yu. Kolotilina, “Diagonal dominance characterization of PM- and PH-matrices,” Zap. Nauchn. Semin. POMI, 367, 110–120 (2009).Google Scholar
  9. 9.
    L. Yu. Kolotilina, “Bounds for the infinity norm of the inverse for certain M- and Hmatrices,” Linear Algebra Appl., 430, 692–702 (2009).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    L. Yu. Kolotilina, “Bounds on the l norm of inverses for certain block matrices,” Zap. Nauchn. Semin. POMI, 439, 145–158 (2015).Google Scholar
  11. 11.
    L. Yu. Kolotilina, “New subclasses of the class of \( \mathrm{\mathscr{H}} \)-matrices and related bounds for the inverses,” Zap. Nauchn. Semin. POMI, 453, 148–171 (2016).Google Scholar
  12. 12.
    N. Morača, “Upper bounds for the infinity norm of the inverse of SDD and \( \mathcal{S} \) – SDD matrices,” J. Comput. Appl. Math., 206, 666–678 (2007).Google Scholar
  13. 13.
    A. Ostrowski, “On some metrical properties of operator matrices and matrices partitioned into blocks,” J. Math. Anal. Appl., 2, 161–209 (1961).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    B. Polman, “Incomplete blockwise factorizations of (Block) H-matrices,” Linear Algebra Appl., 90, 119–132 (1987).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    F. Robert, “Blocs-H-matrices et convergence des méthodes itérative classiques par blocs,” Linear Algebra Appl., 2, 223–265 (1969).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    E. Šanca and V. Kostić, “Diagonal scaling of a special type and its benefits,” Proc. Appl. Math. Mech., 13, 409–410 (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.St.Petersburg Department of the Steklov Mathematical InstituteSt.PetersburgRussia

Personalised recommendations