Skip to main content
Log in

Iterative Processes in the Krylov–Sonneveld Subspaces

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The paper presents a generalized block version of the Induced Dimension Reduction (IDR) methods in comparison with the Multi–Preconditioned Semi-Conjugate Direction (MPSCD) algorithms in Krylov subspaces with deflation and low-rank matrix approximation. General and individual orthogonality and variational properties of these two methodologies are analyzed. It is demonstrated, in particular, that for any sequence of Krylov subspaces with increasing dimensions there exists a sequence of the corresponding shrinking subspaces with decreasing dimensions. The main conclusion is that the IDR procedures, proposed by P. Sonneveld and other authors, are not an alternative to but a further development of the general principles of iterative processes in Krylov subspaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Wesseling and P. Sonneveld, “Numerical experiments with a multiple grid and a preconditioned Lanczos type method,” Lect. Notes Math., 771, 543–562 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Sonneveld and M. B. Van Gijzen, “IDR(s): a family of simple and fast algorithms for solving large nonsymmetric systems of linear equations,” SIAM J. Sci. Comput., 31, No. 2, 1035–1062 (2008/09).

    Article  MathSciNet  MATH  Google Scholar 

  3. M. H. Gutknecht, “IDR explained,” Electron. Trans. Numer. Anal., 36, 126–148 (2009/10).

    MathSciNet  MATH  Google Scholar 

  4. Y. Onoue, S. Fujino, and N. Nakashima, “An overview of a family of new iterative methods based on IDR theorem and its estimation,” in: Proceedings of the International Multi-Conference of Engineers and Computer Scientists, 2009, Vol. 11, IMECS, Hong Kong (2009), pp. 2129–2134.

  5. V. Simoncini and D. B. Szyld, “Interpreting IDR as a Petrov–Galerkin method,” SIAM J. Sci. Comput., 32, No. 4, 1898–1912 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Tanio and M. Sugihara, “GBi-CGSTAB(s,l): IDR(s) with higher-order stabilization polynomials,” J. Comput. Appl. Math., 235, No. 3, 765–784 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  7. G. L. Sleijpen, P. Sonneveld, and M. B. Van Gijzen, “Bi-CGStab as an induced dimension reduction method,” Appl. Numer. Math., 60, No. 11, 1100–1114 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  8. G. L. Sleijpen and M. B. Van Gijzen, “Exploiting BiCGStab(l) strategies to induce dimension reduction,” SIAM J. Sci. Comput., 32 (5), 2687–2709 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Sonneveld, “On the convergence behavior of IDR(s) and related methods,” SIAM J. Sci. Comput., 34 (5), 2576–2598 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. Saad, Iterative Methods for Sparse Linear Systems (Second edition), Society for Industrial and Applied Mathematics (2003).

  11. V. P. Il’in, Methods and Technologies of Finite Elements [in Russian], Izd. IVMiMG SO RAN, Novosibirsk (2007).

    Google Scholar 

  12. G. L. Sleijpen and D. R. Fokkema, “BiCGStab(l) for linear equations involving unsymmetric matrices with complex spectrum,” Electron. Trans. Numer. Anal., 1, 11–32 (1993).

    MathSciNet  MATH  Google Scholar 

  13. V. P. Il’in, “Biconjugate direction methods in Krylov subspaces,” Sib. Zh. Ind. Mat., 11, No. 4, 47–60 (2008).

    MATH  Google Scholar 

  14. M. B. Van Gijzen, G. I. Sleijpen, and J. -P. Zemke, “Flexible and multi-shift induced dimension reduction algorithms for solving large sparse linear systems,” Numer. Linear Algebra Appl., 22, 1–25 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  15. M. B. Van Gijzen and P. Sonneveld, “Algorithm 913: an elegant IDR(s) variant that efficiently exploits biorthogonality properties,” ACM Trans. Math. Software, 38, No. 1, 5.1–5.19 (2011).

    MathSciNet  MATH  Google Scholar 

  16. O. Rendel, A. Rizvanolli, and J.-P. Zemke, “IDR: A new generation of Krylov subspace methods,” Linear Algebra Appl., 439, No. 4, 1040–1061 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Astudillo and M. B. Van Gijzen, “A restarted induced dimension reduction method to approximate eigenpairs of large unsymmetric matrices,” J. Comput. Appl. Math., 296, 24–35 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  18. V. P. Il’in, “Methods of semiconjugate directions,” Russ. J. Numer. Anal. Math. Model., 23, No. 4, 369–387 (2008).

    MathSciNet  MATH  Google Scholar 

  19. V. P. Il’in and E. A. Itskovich, “On the semi-conjugate direction methods with dynamic preconditioning,” J. Appl. Ind. Math., 3, No. 2, 222–233 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  20. S. C. Eisenstat, H. C. Elman, and M. H. Schultz, “Variational iterative methods for nonsymmetric systems of linear equations,” SIAM J. Numer. Anal., 20, No. 3, 345–357 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Y. Yuan, G. H. Golub, R. J. Plemmons, and W. A. Cecilio, “Semi-conjugate direction methods for real positive definite systems,” BIT, 44, No. 1, 189–207 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Nicolaides, “Deflation of conjugate gradients with applications to boundary value problems,” SIAM J. Numer. Anal., 24, 355–365 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  23. L. Yu. Kolotilina, “Twofold deflation preconditioning of linear algebraic systems. I. Theory,” Zap. Nauchn. Semin. POMI, 229, 95–152 (1995).

    MATH  Google Scholar 

  24. O. Coulaud, L. Giraud, P. Ramet, and X. Vasseur, Deflation and augmentation techniques in Krylov subspace methods for the solution of linear systems, INRIA, Bordeaux-Sud Ouest, France, Res. Rep. No. 8265 (2013).

  25. M. H. Gutknecht, “Deflated and augmented Krylov subspace methods: A framework for deflated BICG and related solvers,” SIAM J. Matrix Anal. Appl., 35, No. 4, 1444–1466 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  26. Y. L. Gurieva and V. P. Il’in, “Parallel approaches and technologies of domain decomposition methods,” Zap. Nauchn. Semin. POMI, 428, 89–106 (2014).

    MATH  Google Scholar 

  27. V. P. Il’in, “Problems of parallel solution of large systems of linear algebraic equations,” Zap. Nauchn. Semin. POMI, 439, 112–127 (2015).

    Google Scholar 

  28. R. Bridson and C. Greif, “A multipreconditioned conjugate gradient algorithm,” SIAM J. Matrix Anal. Appl., 27, No. 4, 1056–1068 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  29. C. L. Lawson and R. J. Hanson, Solving Least Squares Problems [Russian translation], Nauka, Moscow (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Il’in.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 453, 2016, pp. 114–130.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’in, V.P. Iterative Processes in the Krylov–Sonneveld Subspaces. J Math Sci 224, 890–899 (2017). https://doi.org/10.1007/s10958-017-3459-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-017-3459-4

Navigation