Journal of Mathematical Sciences

, Volume 223, Issue 3, pp 273–284 | Cite as

Existence of an Invariant Torus for a Degenerate Linear Extension of Dynamical Systems


Under the assumptions that a degenerate system defined on the direct product of a torus and a Euclidean space can be reduced to a central canonical form and that the corresponding homogeneous nondegenerate system is exponentially dichotomous on the semiaxes, we establish a necessary and sufficient condition for the existence of a unique invariant torus of the degenerate linear system. We also establish conditions for the preservation of an asymptotically stable invariant toroidal manifold for a degenerate linear extension of the dynamical system on a torus under small perturbations in the set of nonwandering points.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Campbell and L. Petzold, “Canonical forms and solvable singular systems of differential equations,” SIAM J. Algebraic Discrete Methods, 4, 517–521 (1983).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    A. M. Samoilenko, M. I. Shkil’, and V. P. Yakovets’, Linear Systems of Differential Equations with Degenerations [in Ukrainian], Vyshcha Shkola, Kyiv (2000).Google Scholar
  3. 3.
    V. F. Chistyakov and A. A. Shcheglova, Selected Chapters of the Theory of Algebraic-Differential Systems [in Russian], Nauka, Novosibirsk (2003).MATHGoogle Scholar
  4. 4.
    Yu. E. Boyarintsev, V. A. Danilov, A. L. Loginov, and V. F. Chistyakov, Numerical Methods for the Solution of Singular Systems [in Russian], Nauka, Novosibirsk (1989).MATHGoogle Scholar
  5. 5.
    A. A. Boichuk, “A criterion for the existence of unique invariant tori of linear extensions of the dynamical systems,” Ukr. Mat. Zh., 59, No. 1, 3–13 (2007); English translation: Ukr. Math. J., 59, No. 1, 1–11 (2007).Google Scholar
  6. 6.
    A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems, VSP, Utrecht (2004).CrossRefMATHGoogle Scholar
  7. 7.
    A. Boichuk, M. Langerová, M. Růžičková, and E. Voitushenko, “System of differential equations with pulse actions,” Adv. Difference Equat., No. 186 (2013).Google Scholar
  8. 8.
    A. M. Samoilenko, Elements of the Mathematical Theory of Multifrequency Oscillations. Invariant Tori [in Russian], Moscow, Nauka (1987).Google Scholar
  9. 9.
    M. O. Perestyuk and P. V. Feketa, “On preservation of invariant tori for multifrequency systems,” Ukr. Mat. Zh., 65, No. 11, 1498–1505 (2013); English translation: Ukr. Math. J., 65, No. 11, 1661–1669 (2014).Google Scholar
  10. 10.
    V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations [in Russian], OGIZ, Moscow (1947).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Uzhhorod National UniversityUzhhorodUkraine

Personalised recommendations