Journal of Mathematical Sciences

, Volume 223, Issue 3, pp 232–256 | Cite as

Periodic Solutions and Their Properties for Systems of Functional-Differential Equations with Parameter

Article
  • 10 Downloads

We establish sufficient conditions for the existence of periodic solutions for systems of nonlinear functional-differential equations with deviations of the argument and a small parameter ε. We also study the properties of these solutions as ε → 0.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Kato and J. B. McLeod, “The functional-differential equation y′(x) = ayx) + by(x);” Bull. Amer. Math. Soc., 77, 891–937 (1971).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    M. Kwapisz, “On the existence and uniqueness of solutions of certain integral-differential equation,” Ann. Pol. Math., 31, No. 1, 23–41 (1975).MATHGoogle Scholar
  3. 3.
    A. M. Samoilenko and G. P. Pelyukh, “Solutions of systems of nonlinear functional-differential equations bounded on the entire real axis and their properties,” Ukr. Mat. Zh., 46, No. 6, 737–747 (1994); English translation: Ukr. Math. J., 46, No. 6, 799–811 (1994).Google Scholar
  4. 4.
    N. L. Denysenko, “Asymptotic properties of continuous solutions of the systems of functional-differential equations with linear transformations of the argument,” Nauk. Visti Nauk.-Tekh. Univ. Ukr. “Lviv. Politekh. Inst.,” No. 3, 135–141 (2008).Google Scholar
  5. 5.
    N. L. Denysenko, “Properties of continuous periodic solutions of systems of functional-differential equations with small parameter,” Nelin. Kolyv., 17, No. 3, 332–340 (2014); English translation: J. Math. Sci., 212, No. 3, 254–263 (2016).Google Scholar
  6. 6.
    Yu. A. Mitropol’skii, A. M. Samoilenko, and D. I. Martynyuk, Systems of Evolutionary Equations with Periodic and Conditionally Periodic Coefficients [in Russian], Naukova Dumka, Kiev (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.“Kyiv Polytechnic Institute” Ukrainian National Technical UniversityKyivUkraine

Personalised recommendations