Journal of Mathematical Sciences

, Volume 223, Issue 3, pp 199–209 | Cite as

Weakly Perturbed Integral Equations

  • O. A. Boichuk
  • N. O. Kozlova
  • V. A. Feruk
Article
  • 11 Downloads

We establish conditions for the bifurcation of the solutions of weakly perturbed linear integral equations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Samoilenko, A. A. Boichuk, and S. A. Krivosheya, “Boundary-value problems for systems of integrodifferential equations with degenerate kernel,” Ukr. Mat. Zh., 48, No. 11, 1576–1579 (1996); English translation: Ukr. Math. J., 48, No. 11, 1785–1789 (1996).Google Scholar
  2. 2.
    A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems, VSP, Utrecht (2004).CrossRefMATHGoogle Scholar
  3. 3.
    V. F. Zhuravlev, “Boundary-value problems for integral equations with degenerate kernel,” Nelin. Kolyv., 15, No. 1, 36–54 (2012); English translation: J. Math. Sci., 187, No. 4, 413–431 (2012).Google Scholar
  4. 4.
    O. A. Boichuk and I. A. Holovats’ka, “Weakly nonlinear systems of integrodifferential equations,” Nelin. Kolyv., 16, No. 3, 314–321 (2013); English translation: J. Math. Sci., 201, No. 3, 288–295 (2014).Google Scholar
  5. 5.
    A. Yu. Luchka and O. B. Nesterenko, “Projection method for the solution of integrodifferential equations with restrictions and control,” Nelin. Kolyv., 11, No. 2, 208–216 (2008); English translation: Nonlin. Oscillat., 11, No. 2, 219–228 (2008).Google Scholar
  6. 6.
    A. Yu. Luchka and V. F. Mel’nychuk, “Construction of solutions of weakly nonlinear integral equations with restrictions,” Nelin. Kolyv., 15, No. 2, 215–222 (2012); English translation: J. Math. Sci., 189, No. 5, 805–812 (2013).Google Scholar
  7. 7.
    N. O. Kozlova and V. A. Feruk, “Noetherian boundary-value problems for integral equations,” Nelin. Kolyv., 19, No. 1, 58–66 (2016); English translation: J. Math. Sci., 222, No. 3, 266–275 (2017).Google Scholar
  8. 8.
    L. A. Lyusternik and V. I. Sobolev, A Brief Course of Functional Analysis [in Russian], Vysshaya Shkola, Moscow (1982).MATHGoogle Scholar
  9. 9.
    R. A. Horn and C. R. Johnson, Matrix Analysis [Russian translation], Mir, Moscow (1989).Google Scholar
  10. 10.
    S. G. Krein, Linear Equations in Banach Spaces [in Russian], Nauka, Moscow (1971).Google Scholar
  11. 11.
    M. I. Vishik and L. A. Lyusternik, “Solution of some problems of perturbations in the case of matrices and self-adjoint and nonselfadjoint differential equations,” Usp. Mat. Nauk, 15, Issue 3, 3–80 (1960).Google Scholar
  12. 12.
    D. Hilbert, Selected Works [Russian translation], Vol. 2, Faktorial, Moscow (1998).Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • O. A. Boichuk
    • 1
  • N. O. Kozlova
    • 2
  • V. A. Feruk
    • 3
  1. 1.Institute of MathematicsUkrainian National Academy of SciencesKyivUkraine
  2. 2.Shevchenko Kyiv National UniversityKyivUkraine
  3. 3.Institute of MathematicsUkrainian National Academy of SciencesKyivUkraine

Personalised recommendations