Journal of Mathematical Sciences

, Volume 220, Issue 6, pp 691–700 | Cite as

Elements of Poisson Integral Calculus and Quantum Mechanics

  • S. I. Frolov

The theory of integration along Poisson trajectories is developed. Its probabilistic, statistical, and physical applications are specified.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. I. Frolov, “Continuous product and random walks,” J. Math. Sci., 88, No. 6, 884–893 (1998).MathSciNetCrossRefGoogle Scholar
  2. 2.
    S. I. Frolov, “Continuous product and integral along Poisson trajectories,” J. Math. Sci., 103, No. 5, 631–637 (2001).MathSciNetCrossRefGoogle Scholar
  3. 3.
    S. I. Frolov, “Poisson path integrals of the “Riemann kind,” J. Math. Sci., 126, No. 1, 1036–1042 (2005).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    F. R. Gantmacher, Matrix Theory, AMS Chelsea Publishing (2000).Google Scholar
  5. 5.
    V. Lipskiy, Combinatorics for Programmers [in Russian], Mir, Moscow (1988).Google Scholar
  6. 6.
    R. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals, McGraw–Hill, New York (1965).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Scientific Research Institute of Polymeric MaterialsPermRussia

Personalised recommendations