Journal of Mathematical Sciences

, Volume 220, Issue 5, pp 603–614 | Cite as

On a Model Semilinear Elliptic Equation in the Plane

  • Vladimir Gutlyanskiĭ
  • Olga Nesmelova
  • Vladimir Ryazanov


Assume that Ω is a regular domain in the complex plane ℂ, and A(z) is a symmetric 2×2 matrix with measurable entries, det A = 1, and such that 1/K|ξ|2 ≤ 〈A(z)ξ, ξ〉 ≤ K|ξ|2, ξ ∈  2, 1 ≤ K < ∞. We study the blow-up problem for a model semilinear equation div (A(z)∇u) = e u in Ω and show that the well-known Liouville–Bieberbach function solves the problem under an appropriate choice of the matrix A(z). The proof is based on the fact that every regular solution u can be expressed as u(z) = T(ω(z)), where ω : Ω → G stands for a quasiconformal homeomorphism generated by the matrix A(z), and T is a solution of the semilinear weihted Bieberbach equation △T = m(w)e in G. Here, the weight m(w) is the Jacobian determinant of the inverse mapping ω −1(w).


Semilinear elliptic equations Bieberbach equation quasiconformal mappings Beltrami equation Keller–Osserman condition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. V. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, Princeton, NJ, 1966.MATHGoogle Scholar
  2. 2.
    K. Astala, T. Iwaniec, and G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Univ. Press, Princeton, NJ, 2009.MATHGoogle Scholar
  3. 3.
    C. Bandle, Yu. Cheng, and G. Porru, Boundary Blow-Up in Semilinear Elliptic Problems with Singular Weights at the Boundary, Mittag-Leffler Institute, Stockholm, 1999/2000, Report No. 39.Google Scholar
  4. 4.
    L. Bieberbach, “△u = eu und die automorphen Funktionen,” Math. Ann., 7, No. 7, 173–212 (1916).MathSciNetCrossRefGoogle Scholar
  5. 5.
    B. Bojarski, V. Gutlyanskii, O. Martio, and V. Ryazanov, Infinitesimal Geometry of Quasiconformal and bi-Lipschitz Mappings in the Plane, EMS, Zürich, 2013.CrossRefMATHGoogle Scholar
  6. 6.
    M. Chuaqui and J. Gevirtz, “Constant principal strain mappings on 2-manifolds,” SIAM J. Math. Anal., 32, 734–759 (2000).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    J. I. Diaz, Nonlinear Partial Differential Equations and Free Boundaries. Vol. I. Elliptic Equations, Pitman, Boston, MA, 1985.MATHGoogle Scholar
  8. 8.
    M. Ghergu and V. Radulescu, Nonlinear PDEs. Mathematical Models in Biology, Chemistry and Population Genetics, Springer, Heidelberg, 2012.CrossRefMATHGoogle Scholar
  9. 9.
    F. W. Gehring, “Spirals and the universal Teichm¨uller space,” Acta Math., 141, 99–113 (1978).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    J. Gevirtz, “On planar mappings with prescribed principal strains,” Arch. Rat. Mech. Anal., 117, 295–320 (1992).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    V. Gutlyanskiĭ and O. Martio, “Rotation estimates and spirals,” Conform. Geom. Dyn., 5, 6–20 (2001).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    V. Gutlyanskii, V. Ryazanov, U. Srebro, and E. Yakubov, The Beltrami Equation. A Geometric Approach, Springer, New York, 2012.CrossRefMATHGoogle Scholar
  13. 13.
    J. John, “Rotation and strain,” Comm. Pure Appl. Math., 14, 391–413 (1961).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    F. John, “Uniqueness of non-linear elastic equilibrium for prescribed boundary displacements and sufficiently small strains,” Comm. Pure Appl. Math., 25, 617–634 (1972).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    F. John and L. Nirenberg, “On functions of bounded mean oscillation,” Comm. Pure Appl. Math., 14, 415–426 (1961).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    J. B. Keller, “On solutions of △u = f(u),” Comm. Pure Appl. Math., 10, 503–510 (1957).MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    M. Marcus and L. Veron, Nonlinear Second Order Elliptic Equations Involving Measures, De Gruyter, Göttingen, 2014.MATHGoogle Scholar
  18. 18.
    R. Osserman, “On the inequality △u ≥ f(u),” Pacific J. Math., 7, 1641–1647 (1957).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Vladimir Gutlyanskiĭ
    • 1
  • Olga Nesmelova
    • 1
  • Vladimir Ryazanov
    • 1
  1. 1.Institute of Applied Mathematics and Mechanics, National Academy of Sciences of UkraineSlavyanskUkraine

Personalised recommendations