Skip to main content
Log in

On a Model Semilinear Elliptic Equation in the Plane

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Assume that Ω is a regular domain in the complex plane ℂ, and A(z) is a symmetric 2×2 matrix with measurable entries, det A = 1, and such that 1/K|ξ|2 ≤ 〈A(z)ξ, ξ〉 ≤ K|ξ|2, ξ ∈  2, 1 ≤ K < ∞. We study the blow-up problem for a model semilinear equation div (A(z)∇u) = eu in Ω and show that the well-known Liouville–Bieberbach function solves the problem under an appropriate choice of the matrix A(z). The proof is based on the fact that every regular solution u can be expressed as u(z) = T(ω(z)), where ω : Ω → G stands for a quasiconformal homeomorphism generated by the matrix A(z), and T is a solution of the semilinear weihted Bieberbach equation △T = m(w)e in G. Here, the weight m(w) is the Jacobian determinant of the inverse mapping ω −1(w).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. V. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, Princeton, NJ, 1966.

    MATH  Google Scholar 

  2. K. Astala, T. Iwaniec, and G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Univ. Press, Princeton, NJ, 2009.

    MATH  Google Scholar 

  3. C. Bandle, Yu. Cheng, and G. Porru, Boundary Blow-Up in Semilinear Elliptic Problems with Singular Weights at the Boundary, Mittag-Leffler Institute, Stockholm, 1999/2000, Report No. 39.

  4. L. Bieberbach, “△u = eu und die automorphen Funktionen,” Math. Ann., 7, No. 7, 173–212 (1916).

    Article  MathSciNet  Google Scholar 

  5. B. Bojarski, V. Gutlyanskii, O. Martio, and V. Ryazanov, Infinitesimal Geometry of Quasiconformal and bi-Lipschitz Mappings in the Plane, EMS, Zürich, 2013.

    Book  MATH  Google Scholar 

  6. M. Chuaqui and J. Gevirtz, “Constant principal strain mappings on 2-manifolds,” SIAM J. Math. Anal., 32, 734–759 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. I. Diaz, Nonlinear Partial Differential Equations and Free Boundaries. Vol. I. Elliptic Equations, Pitman, Boston, MA, 1985.

    MATH  Google Scholar 

  8. M. Ghergu and V. Radulescu, Nonlinear PDEs. Mathematical Models in Biology, Chemistry and Population Genetics, Springer, Heidelberg, 2012.

    Book  MATH  Google Scholar 

  9. F. W. Gehring, “Spirals and the universal Teichm¨uller space,” Acta Math., 141, 99–113 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Gevirtz, “On planar mappings with prescribed principal strains,” Arch. Rat. Mech. Anal., 117, 295–320 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Gutlyanskiĭ and O. Martio, “Rotation estimates and spirals,” Conform. Geom. Dyn., 5, 6–20 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  12. V. Gutlyanskii, V. Ryazanov, U. Srebro, and E. Yakubov, The Beltrami Equation. A Geometric Approach, Springer, New York, 2012.

    Book  MATH  Google Scholar 

  13. J. John, “Rotation and strain,” Comm. Pure Appl. Math., 14, 391–413 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  14. F. John, “Uniqueness of non-linear elastic equilibrium for prescribed boundary displacements and sufficiently small strains,” Comm. Pure Appl. Math., 25, 617–634 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  15. F. John and L. Nirenberg, “On functions of bounded mean oscillation,” Comm. Pure Appl. Math., 14, 415–426 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  16. J. B. Keller, “On solutions of △u = f(u),” Comm. Pure Appl. Math., 10, 503–510 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Marcus and L. Veron, Nonlinear Second Order Elliptic Equations Involving Measures, De Gruyter, Göttingen, 2014.

    MATH  Google Scholar 

  18. R. Osserman, “On the inequality △u ≥ f(u),” Pacific J. Math., 7, 1641–1647 (1957).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Gutlyanskiĭ.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 13, No. 1, pp. 91–105, January–March, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutlyanskiĭ, V., Nesmelova, O. & Ryazanov, V. On a Model Semilinear Elliptic Equation in the Plane. J Math Sci 220, 603–614 (2017). https://doi.org/10.1007/s10958-016-3203-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-3203-5

Keywords

Navigation